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Abstract
Analogy is core to human cognition. It allows
us to solve problems based on prior experience,
it governs the way we conceptualize new infor-
mation, and it even influences our visual percep-
tion. The importance of analogy to humans has
made it an active area of research in the broader
field of artificial intelligence, resulting in data-
efficient models that learn and reason in human-
like ways. While analogy and deep learning have
generally been considered independently of one
another, the integration of the two lines of re-
search seems like a promising step towards more
robust and efficient learning techniques. As part
of the first steps towards such an integration, we
introduce the Analogical Matching Network: a
neural architecture that learns to produce analo-
gies between structured, symbolic representations
that are largely consistent with the principles of
Structure-Mapping Theory.

1. Introduction
Analogical reasoning is a form of inductive reasoning that
cognitive scientists consider to be one of the cornerstones of
human intelligence (Gentner, 2003; Hofstadter, 2001; 1995).
Analogy shows up at nearly every level of human cognition,
from low-level visual processing (Sagi et al., 2012) to ab-
stract conceptual change (Gentner et al., 1997). Problem
solving using analogy is common, with past solutions being
used to solve new problems (Holyoak et al., 1984; Novick,
1988). Analogy also facilitates learning and understand-
ing by allowing people to generalize specific situations into
increasingly abstract schemas (Gick & Holyoak, 1983).

Many different theories have been proposed for how humans
perform analogy (Mitchell, 1993; Chalmers et al., 1992;
Gentner, 1983; Holyoak et al., 1996). One of the most influ-
ential theories is Structure-Mapping Theory (SMT) (Gen-
tner, 1983), which posits that analogy involves the align-
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ment of structured representations of objects or situations
subject to certain constraints. In this work, we introduce
the Analogical Matching Network (AMN), a neural archi-
tecture that learns to produce analogies between symbolic
representations that are largely consistent with SMT.

2. Related Work
Many different computational models of analogy have
been proposed (Holyoak & Thagard, 1989; O’Donoghue
& Keane, 1999; Forbus et al., 2017), each instantiating a
different cognitive theory of analogy. The differences be-
tween them are compounded by the computational costs of
analogical reasoning, a provably NP-HARD problem (Veale
& Keane, 1997). Many of the early approaches to analogy
were connectionist (Gentner & Markman, 1993). The STAR
architecture of (Halford et al.) used tensor product represen-
tations of structured data to perform simple analogies of the
form R(x, y)⇒ S(f(x), f(y)). Drama (Eliasmith & Tha-
gard, 2001) was an implementation of the multi-constraint
theory of analogy (Holyoak et al., 1996) that employed a
holographic representation similar to tensor products to em-
bed structure. LISA (Hummel & Holyoak, 1997; 2005)
was a hybrid symbolic connectionist approach to analogy.
It staged the mapping process temporally, generating map-
pings from elements of the compared representations that
were activated at the same time. Only a few recent deep
learning works incorporated cognitive theories of analogy
(Hill et al., 2019; Zhang et al., 2019). Generally, prior deep
learning work has only considered analogy as solving simple
problems of the form A : B :: C : D (Mikolov et al., 2013;
Reed et al., 2015). Still, such prior works made progress in
applying analogy to more perceptual data, e.g., language.

3. Structure-Mapping Theory
In Structure-Mapping Theory (SMT) (Gentner, 1983), anal-
ogy centers around the structural alignment of relational
representations (see Figure 1). A relational representa-
tion is a set of logical expressions constructed from en-
tities (e.g., sun), attributes (e.g., YELLOW), functions (e.g.,
TEMPERATURE), and relations (e.g., GREATER). Struc-
tural alignment is the process of producing a mapping be-
tween two relational representations (referred to as the base
and target). A mapping is a triple

〈
M,C, S

〉
, where M is a
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Figure 1. Graph representations for models of the atom (left) and solar system (right). Light green edges indicate correspondences

set of correspondences between the base and target, C is a
set of candidate inferences (i.e., inferences about the target
derived from the structure of the base), and S is a structural
evaluation score for the quality of M . Correspondences are
pairs of expressions or entities between the base and target.
While entities can correspond irrespective of their labels,
there are more rigorous criteria for matching expressions.

SMT asserts that M should satisfy the following: 1) One-
to-One: Each element of the base and target can be a part
of at most one correspondence. 2) Parallel Connectivity:
Two expressions can be in a correspondence with each other
only if their arguments are also in a correspondence with
each other. 3) Tiered Identicality: Relations of expressions
in a correspondence must match identically, but functions
need not be identical if their correspondence would support
structural connectivity. 4) Systematicity: Preference should
be given to mappings with more deeply nested expressions.

In this work, the base and target expressions are consid-
ered semi-ordered directed-acyclic graphs (DAGs) GB =〈
VB , EB

〉
andGT =

〈
VT , ET

〉
, with VB and VT being sets

of nodes and EB and ET being sets of edges. Each node
corresponds to an element in the base or target, with its label
being its relation, function, attribute, or entity name.

4. Model
4.1. Model Components

Given a base GB =
〈
VB , EB

〉
and target GT =

〈
VT , ET

〉
,

AMN produces a set of correspondences M ⊆ VB × VT
and a set of candidate inferences I ∈ VB \ {bi :

〈
bi, tj

〉
∈

M}. Our architecture uses Transformers (Vaswani et al.,
2017) and pointer networks (Vinyals et al., 2015) and takes
inspiration from the work of (Kool et al., 2018).

Representing Structure: AMN first parses both the base
and target into two separate graphs, a label graph and a
signature graph. The label graph is used to get an estimate
of the structural similarity of two expressions. To generate
the label graph, AMN first substitutes each entity node’s

label with a generic entity token (reflecting that entity la-
bels have no utility for producing matchings). Then, each
function and predicate node is assigned a randomly chosen
generic label (from a fixed set of labels) based off of its arity
and orderedness. Assignments are made consistently across
the entire graph, e.g., every instance of the function MASS
across both the base and target would be given the same
generic replacement label. This substitution means the origi-
nal label is not used during matching, which allows AMN to
generalize to unseen symbols. In addition, a signature graph
is constructed which represents nodes by their object identi-
ties. To construct the signature graph, AMN replaces each
distinct entity with a unique identifier (drawn from a fixed
set of possible identifiers). It then assigns each function /
predicate a new label based on arity and orderedness. Unlike
the label graph, two differently labeled symbols would be
given the same label if they have the same properties.

AMN uses two separate DAG LSTMs (Crouse et al., 2019)
to embed the nodes of the label and signature graphs (equa-
tions in Appendix 6.3.1). The set of label structure em-
beddings is written as LV = {lv : v ∈ V } and the set of
signature embeddings is written as SV = {sv : v ∈ V }. Be-
fore passing these embeddings to the next step, each element
of SV is scaled to unit length, i.e. sv becomes sv/‖sv‖.

Correspondence Selector: We utilize the set of embed-
ding pairs for each node of VB and VT , writing lv to denote
the label structure embedding of node v taken from LV and
sv the signature embedding of node v taken from SV . We
first define the set of unprocessed correspondences C(0)

Ĉ = {
〈
b, t
〉
∈ VB × VT : ‖lb − lt‖ ≤ ε}

C(0) = {
〈[
lb; lt; sb; st

]
, sb, st

〉
:
〈
b, t
〉
∈ Ĉ}

where [·; ·] denotes vector concatenation and ε is the tiered
identicality threshold that governs how much the subgraphs
rooted at two nodes may differ and still be considered for
correspondence. The first element of each correspondence
in C(0), i.e., hc =

[
lb; lt; sb; st

]
, is passed through the N -

layered Transformer encoder (equations in Appendix 6.3.3).
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Figure 2. The correspondence selection process, where ⇒ and ⇐ are the start and stop tokens and E , Dt, and Ot are the sets of encoded,
selected, and remaining correspondences

This produces a set of encoded correspondences as E =

{
〈
h
(N)
c , sb, st

〉
∈ C(N)}.

The Transformer decoder (equations in Appendix 6.3.3) will
select some subset of the set of correspondences that pro-
duces the best analogical match (see Figure 2). The layers of
attention-based transformations are performed on only the
initial elements of each tuple, i.e., hd in

〈
hd, sb, st

〉
. We let

Dt be the processed set of all selected correspondences (af-
ter the N attention layers) andOt be the set of all remaining
correspondences at timestep t (with D0 = {START-TOK}
and O0 = E ∪ {END-TOK}). The decoder generates com-
patibility scores αod between each pair of elements, i.e.,〈
o, d
〉
∈ Ot ×Dt. These are combined with the signature

embedding similarities to produce a final compatibility πod

πod = FFN
([

tanh (αod); s>bosbd ; s>tostd
])

where FFN is a two layer feed-forward network with ELU
activations (Clevert et al., 2015). Recall that the signa-
ture components, i.e. sb and st, were scaled to unit length.
Thus, we would expect closeness in the original graph to
be reflected by dot-product similarity and identicality to be
indicated by a maximum value dot-product, i.e. s>bosbd = 1

or s>tostd = 1. For each o ∈ Ot, we compute its value as

vo = FFN
([

max
d

πod; min
d
πod;

∑
d

πod
|Dt|

])
where FFN is a two layer feed-forward network with ELU
activations. From these, a softmax produces probabilities
and the most probable element is added to Dt+1. When
END-TOK is selected, the set of correspondences M re-
turned are the node pairs in VB × VT associated with D.

Candidate Inference Selector: The output of the corre-
spondence selector is a set of correspondences M . The
candidate inferences associated with M are drawn from the
nodes of the base graph VB that were not used inM . Let Vin
and Vout be the subsets of VB that were and were not used

in M . AMN first extracts the signature embeddings for both
sets, i.e., Sin = {sb : b ∈ Vin} and Sout = {sb : b ∈ Vout}.

AMN will select elements from Sout to return. Like before,
we let Dt be the set of all selected elements from Sout and
Ot be the set of all remaining elements from Sout at timestep
t. AMN computes compatibility scores between pairs of out-
put options with candidate inference and previously selected
nodes, i.e. αod for each

〈
o, d
〉
∈ Ot × (Dt ∪ Sin). The

compatibility scores are given by a simple single-headed
attention computation (see Appendix 6.3.2). The compat-
ibilities are used directly to compute a value vo for each
element of Ot. AMN computes the value for a node o as

α′od = tanh (αod)

vo = FFN
([

max
d

α′od; min
d
α′od;

∑
d

α′od
|Dt|

])
A softmax is used and the most probable element is added
to Dt+1, ending when END-TOK is selected.

4.2. Model Scoring

Structural Match Scoring: In order to avoid counting er-
roneous correspondence predictions towards the score of the
output correspondences M , we first identify all correspon-
dences that are either degenerate or violate the constraints
of SMT. Degenerate correspondences are between constants
with no higher-order structural support in M (i.e., if either
has no parent participating in a correspondence in M ). Let
the valid subset of M be Mval. A root correspondence m
is one such that there does not exist another correspondence
m′ such that m′ ∈ Mval and a node in m′ is an ancestor
of a node in m. For m =

〈
b, t
〉

in Mval, its score s(m) is
given as the size of the subgraph rooted at b in the base. The
structural match score forM is the sum of scores for all root
correspondences. This repeatedly counts nodes appearing in
the dependencies of multiple correspondences, which leads
to higher scores for more interconnected matchings.
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Table 1. AMN correspondence prediction results for performance ratio, solution type rate (↑ better), and error rate (↓ better), and AMN
candidate inference prediction results

Domain r Struct. Perf. Larger Equiv. Err. Free 1-to-1 PC Degen. CI F1 CI Rec. CI Prec. CI Acc.

Synthetic 1 0.702 0.000 0.308 0.342 0.007 0.106 0.018 0.901 0.866 0.969 0.860
Synthetic 16 0.948 0.001 0.671 0.684 0.006 0.021 0.009 0.899 0.867 0.964 0.860
Oddity 1 0.775 0.062 0.404 0.483 0.152 0.223 0.000 0.971 0.968 0.991 0.962
Oddity 16 0.957 0.075 0.492 0.571 0.130 0.139 0.000 0.991 0.995 0.993 0.991
Moral DM 1 0.617 0.014 0.017 0.076 0.001 0.169 0.030 0.889 0.817 0.987 0.816
Moral DM 16 0.968 0.081 0.210 0.352 0.000 0.039 0.015 0.897 0.832 0.984 0.830
Geometric 1 0.870 0.066 0.539 0.654 0.041 0.116 0.000 0.940 0.928 0.989 0.924
Geometric 16 1.038 0.069 0.707 0.783 0.029 0.043 0.000 0.960 0.954 0.993 0.951

Structural Evaluation Maximization: Dynamically as-
signing labels to each example allows AMN to handle never-
before-seen symbols, but its randomness can lead to vari-
ability in terms of outputs. AMN combats this by run-
ning each test problem r times and returning the predicted
matchM that maximizes the structural evaluation score, i.e.,
M = arg maxMr

s(Mr). Notably, AMN does not attempt
to alter or correct the mapping it chooses this way, so unlike
SME, the mapping it returns can include SMT violations.

5. Experiments
AMN was trained on 100,000 synthetic analogy examples.
A single example consisted of base and target graphs, a set
of correspondences between the base and target, and a set of
nodes from the base to be considered candidate inferences.

Though all training was done with synthetic data, we evalu-
ated the effectiveness of AMN on both synthetic data and
data used in previous analogy experiments. The corpus of
previous analogy examples was taken from the public re-
lease of SME1. Importantly, AMN was not trained on the
corpus of existing analogy examples (AMN never learned
from a real-world analogy example). In fact, there was
no overlap between the symbols used in that corpus and
the symbols used for the synthetic data. The four domains
tested in this work are the Synthetic, Visual Oddity, Moral
Decision Making, Geometric Analogies domains. Each are
described in Appendix 6.2 and examples of AMN’s output
for each domain can be found in Appendix 6.4.

5.1. Results and Discussion

Table 1 shows the results for AMN across different values
of r, where r denotes the re-run hyperparameter detailed
in Section 4.2. When evaluating on the synthetic data, the
comparison set of correspondences was given by the data
generator; whereas when evaluating on the three other anal-
ogy domains, the comparison set of correspondences was
given by the output of SME. It is important to note that we

1http://www.qrg.northwestern.edu/software/sme4/index.html

are using SME as our stand-in for SMT (as it is the most
widely accepted computational model of SMT). Thus, we
do not want significantly different results from SME, e.g.
substantially higher or lower structural evaluation scores.
Candidate inference prediction performance was measured
relative to the set of correspondences AMN generated.

Analysis: The left side of Table 1 shows the average ratio of
AMN’s performance (labeled Struct. Perf.), as measured by
structural evaluation score, against the comparison method’s
performance (i.e., data generator correspondences or SME)
across domains. As can be seen, AMN was around 95-104%
of SME’s performance in terms of structural evaluation
score on the three preexisting domains, which indicates that
it was finding similar structural matches.

The middle-left of Table 1 gives us the best sense of
how well AMN modeled SMT. We observe AMN’s perfor-
mance in terms of the proportion of larger, equivalent, and
error-free matches it produces (labeled Larger, Equiv., and
Err. Free, respectively). Error-free matches do not contain
degenerate correspondences or SMT constraint violations,
whereas equivalent and larger matches are both error-free
and have the same / larger structural evaluation score as com-
pared to gold set of correspondences. The Equiv. column
provides the best indication that AMN could model SMT. It
shows that ' 50% of AMN’s outputs were SMT-satisfying
analogical matches with the exact same structural score as
SME in two of the three non-synthetic domains.

The right side of Table 1 shows the frequency of the differ-
ent types of errors, including violations of the one-to-one
and parallel connectivity constraints, and degenerate corre-
spondences (labeled 1-to-1, PC, and Degen., respectively).
Importantly, degenerate correspondences were not an is-
sue for any domain, which verifies that AMN leveraged
higher-order relational structure when generating matches.

The candidate inference (CI) metrics (averaged across all
problems) shows that AMN was fairly effective in predicting
candidate inferences. The high accuracy scores across do-
mains indicate that AMN could capture the notion structural
support for candidate inferences.
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6. Appendix
6.1. Model Details

In the DAG LSTM, the node embeddings were 32-
dimensional vectors and the edge embeddings were 16-
dimensional vectors. For all Transformer components, our
model used multi-headed attention with 2 attention layers
each having 4 heads. In each multi-headed attention layer,
the query and key vectors were projected to 128-dimensional
vectors. The feed forward networks used in the Transformer
components had one hidden layer with a dimensionality
twice that of the input vector size. The feed forward net-
works used to compute the values in the correspondence
selector used two 64-dimensional hidden layers.

Training Loss: As both the correspondence and candidate
inference components use a softmax, the loss function is
categorical cross entropy. Teacher forcing is used to guide
the decoder to select the correct choices during training. The
losses for both the correspondence and candidate inference
components are summed together to produce the final loss
which is minimized with Adam (Kingma & Ba, 2014).

6.2. Data Details

Synthetic Data: To generate a synthetic example (see
Figure 3) for training, we first generate a set of random
graphsC, which will form the basis for the correspondences.
Next, we construct the base B by further generating graphs
around C. Likewise, for the target T we also build another
set of graphs around the C. The graphs of C are then used
to form the correspondences between the base and target.
Any element in B that is an ancestor of a node from C or
a descendent of such an ancestor is considered a candidate
inference.

Experimental Domains: We describe each domain used
in this paper here (a more detailed description can be found
in (Forbus et al., 2017))

1. Synthetic: this domain consisted of 1000 examples gen-
erated with the same parameters as the training data.

2. Visual Oddity: this problem setting was initially pro-
posed to explore cultural differences to geometric rea-
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Neural Analogical Matching

Figure 3. Synthetic example with a base (red), target (blue), and shared subgraphs (green)

soning in (Dehaene et al., 2006). The work of (Lovett &
Forbus, 2011) modeled the findings of the original exper-
iment computationally, and from their work we extracted
3405 analogical comparisons.

3. Moral Decision Making: this domain was taken from
the work of (Dehghani et al., 2008a), who introduced a
computational model of moral decision making driven
by SME. From the works of (Dehghani et al., 2008a;b),
we extracted 420 analogical comparisons.

4. Geometric Analogies: this domain originated from
(Evans, 1964). Each problem was an incomplete analogy
between manually encoded geometric figures. In (Lovett
et al., 2009; Lovett & Forbus, 2012) it was shown that
the analogy problems could be solved with structure-
mapping over automatic encodings (produced by the
CogSketch system (Forbus et al., 2011)). From that work
we extracted 866 analogies.

6.3. Background

6.3.1. DAG LSTMS

DAG LSTMs extend Tree LSTMs (Tai et al., 2015) to DAG-
structured data. As with Tree LSTMs, DAG LSTMs com-
pute each node embedding as the aggregated information
of all their immediate predecessors (the equations for the
DAG LSTM are identical to those of the Tree LSTM). The
difference between the two is that DAG LSTMs stage the
computation of a node’s embedding based on the order given
by a topological sort of the input graph. Batching of compu-
tations is done by grouping together updates of independent
nodes (where two nodes are independent if they are neither
ancestors nor predecessors of one another). As in (Crouse
et al., 2019), for a node, v, its initial node embedding, sv , is
assigned based on its label and arity. The DAG LSTM then

computes the final embedding hv to be

iv = σ
(
Wisv +

∑
w∈P(v)

U
(evw)
i hw + bi

)
ov = σ

(
Wosv +

∑
w∈P(v)

U (evw)
o hw + bo

)
ĉv = tanh

(
Wcsv +

∑
w∈P(v)

U (evw)
c hw + bc

)
fvw = σ

(
Wfsv + U

(evw)
f hw + bf

)
cv = iv � ĉv +

∑
w∈P(v)

fvw � cw

hv = ov � tanh
(
cv
)

where � is element-wise multiplication, σ is the sigmoid
function, P is the predecessor function that returns the argu-
ments for a node, U (evw)

i , U (evw)
o , U (evw)

c , and U (evw)
f are

learned matrices per edge type. i and o represent input and
output gates, c and ĉ are memory cells, and f is a forget
gate.

6.3.2. MULTI-HEADED ATTENTION

The multi-headed attention (MHA) mechanism of (Vaswani
et al., 2017) is used in our work to compare correspondences
against one another. In this work, MHA is given two inputs,
a query vector q and a list of key vectors to compare the
query vector against

〈
k1, . . . , kn

〉
. In N -headed attention,

N separate attention transformations are computed. For
transformation i we have

q̂i = W
(q)
i q, kij = W

(k)
i kj , vij = W

(v)
i kj

wij =
q̂>i kij√
bq̂

αij =
exp (wij)∑
j′ exp(wij′)

qi =
∑
j

αij q̂i

where each of W (q)
i , W (k)

i , and W (v)
i are learned matrices

and bq̂ is the dimensionality of q̂i. The final output vec-
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tor q′ for input q is then given as a combination of its N
transformations

q′ =

N∑
i=1

W
(o)
i qi

where each W
(o)
i is a distinct learned matrix for each i.

In implementation, the comparisons of query and key vec-
tors are batched together and performed as efficient matrix
multiplications.

6.3.3. TRANSFORMER ENCODER-DECODER

The Transformer-based encoder-decoder is given two inputs,
a comparison set C and an output set O. At a high level,
C will be encoded into a new set E , which will inform a
selection process that picks elements of O to return. In the
context of pointer networks, the setO begins as the encoded
input set (i.e., O ≡ E).

Encoder: First, the elements of C, i.e. hc ∈ C, are passed
through N layers of an attention-based transformation. For
element hc in the i-th layer (i.e., h(i−1)c ) this is performed
as follows

ĥc = LN
(
h(i−1)c + MHA(i)

C
(
h(i−1)c ,

〈
h
(i−1)
1 , . . . , h

(i−1)
j

〉))
h(i)c = LN

(
ĥc + FFN(i)

(
ĥc
))

where LN denotes the use of layer normalization (Ba et al.,
2016), MHA(i)

C (Appendix 6.3.2) denotes the use of self
multi-headed attention for layer i (i.e., attention between
h
(i)
c and the other elements of C(i−1)), and FFN(i) is a two-

layer feed-forward neural network with ELU (Clevert et al.,
2015) activations. After N layers of processing, the set of
encoded inputs E is given by E = C(N)

Decoder: With encoded comparison elements E and a set
of potential outputs O, the objective of the decoder is to use
E to inform the selection of some subset of output options
D ⊆ O to return. Decoding happens sequentially; at each
timestep t ∈ {1, . . . , n} the decoder selects an element from
O ∪ {END-TOK} (where END-TOK is a learned triple) to
add to D. If END-TOK is chosen, the decoding procedure
stops and D is returned.

Let Dt be the set of elements that have been selected by
timestep t and Ot be the remaining unselected elements
at timetstep t. First, Dt is processed with an N -layered
attention-based transformation. For an element h(i−1)d this
is given by

h́d = LN
(
h
(i−1)
d + MHA(i)

D
(
h
(i−1)
d ,

〈
h
(i−1)
1 , . . . , h

(i−1)
j

〉))
ĥd = LN

(
h́d + MHA(i)

E
(
h́d,
〈
h
(i−1)
1 , . . . , h

(i−1)
l

〉))
h
(i)
d = LN

(
ĥd + FFN(i)

(
ĥd
))

where MHA(i)
D denotes the use of self multi-headed at-

tention, MHA(i)
E denotes the use of multi-headed atten-

tion against elements of E , and FFN(i) is a two-layer
feed-forward neural network with ELU activations. We
will consider the already selected outputs to be the trans-
formed selected outputs, i.e., Dt = D(N)

t . For a pair,〈
ho, hd

〉
∈ Ot × Dt, we compute their compatibility as

αod

qod = Wqh
(n)
d , kod = Wkho

αdo =
q>odkod√

bo

where Wq and Wk are learned matrices, bo is the dimension-
ality of ho, and FFN is a two layer feed-forward network
with ELU activations. This defines a matrixH ∈ R|Ot|×|Dt|

of compatibility scores. One can then apply some operation
(e.g., max pooling) to produce a vector of values vt ∈ R|Ot|

which can be fed into a softmax to produce a distribution
over options from Ot. The highest probability element δ∗

from the distribution is then added to the set of selected
outputs, i.e., D = Dt ∪ {δ∗}.

6.4. AMN Example Outputs

For the outputs from the non-synthetic domains (all but the
first figure), only small subgraphs of the original graphs are
shown (the original graphs were too large to be displayed)
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Figure 4. AMN output for an example from the Synthetic domain

Figure 5. AMN output for an example from the Visual Oddity domain

Figure 6. AMN output for an example from the Moral Decision Making domain
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Figure 7. AMN output for an example from the Geometric Analogies domain


