Learning Retrosynthetic Planning with Chemical Reasoning

Anonymous Authors'

Abstract

Retrosynthetic planning is a critical task in chem-
istry that identifies a series of reactions which lead
to the synthesis of a target product. It is challeng-
ing even for experienced chemists due to the huge
search space brought by the vast number of possi-
ble chemical transformations. Existing methods
have various limitations, e.g., requiring expen-
sive return estimation by rollout with high vari-
ance or optimizing for search speed rather than
the quality. In this paper, we propose a retrosyn-
thetic planning framework, Ret ro*, by combin-
ing learned neural search biases with chemical
reasoning. Ret ro*is a neural-based A*-like al-
gorithm that finds high-quality synthetic routes
efficiently using an AND-OR tree. While it could
be directly applied to small molecules, we further
extend the framework to handle polymer synthe-
sis. Experiments on benchmark datasets show
that, our proposed method outperforms existing
state-of-the-art with respect to both the success
rate and solution quality, while being more effi-
cient at the same time.

1. Introduction

Retrosynthetic planning is one of the fundamental problems
in organic chemistry. Given a target product, the goal of
retrosynthesis is to identify a series of reactions which lead
to the synthesis of the product, by searching backwards and
iteratively applying chemical transformations to unavailable
molecules. As thousands of theoretically-possible transfor-
mations can all be applied during each step of reactions,
the search space of planning will be huge and makes the
problem challenging even for experienced chemists.

The one-step retrosynthesis prediction [5, 17, 6, 13, 10],
which predicts a list of possible direct reactants given prod-
uct, serves as the foundation for realizing the multistep
retrosynthetic planning. While one-step methods are con-
tinuously being improved, most molecules in real world
cannot be synthesized within one step. Possible number of
synthesis steps could go up to 60 or even more. Since each
molecule could be synthesized by hundreds of different pos-
sible reactants, the possible synthesis routes becomes count-
less for a single product. Such huge space poses challenges

for efficient searching and planning, even with advanced
one-step approaches. Previous works on retrosynthetic plan-
ning using Monte Carlo Tree Search (MCTS) [18, 16] and
Heuristic Depth-First Proof-Number Search (DFPN-E) [11]
have achieved superior results over neural- or heuristic-
based Breadth First Search (BFS). However, their methods
suffer from the poor representation of the search space, ex-
pansive rollout estimation, and inconvenient hand-designed
heuristics.

In this paper, we present Retro* and its extension
PolyRetro, the learning-based retrosynthetic planning
algorithms for small molecules and polymers. Our methods
leverage one-step model for chemical reasoning, and learn a
neural search bias for guiding synthesis route search. Below
we summarize our contributions:

e We propose a novel learning-based retrosynthetic plan-
ning algorithm for small molecules to learn from previous
planning experience. The proposed algorithm outper-
forms state-of-the-art methods by a large margin on a
realworld benchmark dataset.

e The extended method on polymer is able to recover
53% of ground truth monomers for a real-world polymer
dataset using limited training data, significantly outper-
forming all existing algorithms.

2. Background

In this section, we state the retrosynthesis problem and
its background we are tackling. The description on how
MCTS and proof number search fit in the problem setting
are deferred to Appendix A.2 and A.3.

One-step retrosynthesis: Denote the space of all molecule
as M. The one-step retrosynthesis takes a target molecule
t € M as input, and predicts a set of source reactants
S C M that can be used to synthesize ¢. In our paper, we
assume the existence of such one-step retrosynthesis model
(or one-step model for simplicity in the rest of the paper) B,

B() : t— {Ri,Si, C(Rl) ?:1 (1)
which outputs at most k reactions R;, the corresponding
reactant sets S; and costs ¢(R;). The cost can be the ac-
tual price of the reaction R;, or simply the negative log-
likelihood of this reaction under model B. A one-step ret-

rosynthesis model can be learned from a dataset of chemical
reactions Dyyqin = {Si, i} [5, 17, 13, 6, 10].

Learning Retrosynthetic Planning with Chemical Reasoning

Retrosynthesis planning. Given a single target molecule
t € M and an initial set of molecules Z C M, we are inter-
ested in synthesizing ¢ via a sequence of chemical reactions
using reactants that are from or can be synthesized by Z.
Retrosynthetic planning algorithms start from the molecule
t, and perform a series of one-step chemical reasoning (ret-
rosynthesis prediction) until all the reactants required are
from Z. Beyond just finding such a synthesis route, our goal
is to find the retrosynthesis plan that are:

e High-quality: The reactants or chemical reactions re-
quired should have as low cost as possible;

e Efficient: Due to the synthesis effort, the number of ret-
rosynthesis steps should be limited.

Our proposed Ret ro™ is aiming at finding the best retrosyn-
thesis plan with respect to above criteria. To achieve this, we
also assume that the quality of a solution can be measured
by the reaction cost, where such cost is known to our model.

3. Retro* Search Algorithm
3.1. AND-OR tree representation

As illustrated in Figure 5, the application of one-step ret-
rosynthesis model B on molecule m can be represented
using one block of AND-OR tree (denoted as AND-OR
stump), with molecule node as ’OR’ node and reaction node
as ’AND’ node. This is because a molecule m can be syn-
thesized using any one of its children reactions (or-relation),
and each reaction node requires all of its children molecules
(and-relation) to be ready.

3.2. Overview of Retro*

Retro* (Algorithm 1 in Appendix B) is a best-first search
algorithm, which exploits neural priors to directly optimize
for the quality of the solution. The search tree T" is an AND-
OR tree, with molecule node as ‘OR’ node and reaction
node as ‘AND’ node. It starts the search tree 7" with a single
root molecule node that is the target molecule ¢. At each
step, it selects a node w in the frontier of 7' (denoted as
F(T)) according to the value function. Then it expands u
with the one-step model B(u) and grows T with one AND-
OR stump. Finally the nodes with potential dependency on
u will be updated. Below we first provide a big picture of
the algorithm by explaining these steps one by one, then we
look into details of value function design and its update in
Section 3.3 and Appendix B.2. Figure 1 summarizes these
steps in high level. The framework is able to induce an
algorithm with theoretical guarantees in Appendix D.

Selection: Given a search tree T', we denote the molecule
nodes as V™ (T) and reaction nodes as V" (T'), where the
total nodes in T will be V(T') = V™(T) U V"(T). The
frontier F(T') C V™(T') contains all the molecule nodes
in T that haven’t been expanded before. Since we want
to minimize the total cost of the final solution, an ideal

option to expand next would be the molecule node which is
part of the best synthesis plan. Suppose we already have a
value function oracle V;(m|T") which tells us that under the
current search tree 7', the cost of the best plan that contains
m for synthesizing target . We can use it to select the next
node to expand:

Mnext = argminmé]—'(T) Vi(m|T) 2
A proper design of such V;(m|T") would not only improve
search efficiency, but can also bring theoretical guarantees.

Expansion: After picking the node m with minimum cost
estimation V;(m|T"), we will expand the search tree with k
one-step retrosynthesis proposals from B(m). Specifically,
for each proposed retrosynthesis reaction (R;, S;, ¢(R;)) €
B(m), we create a reaction node R = R; under node m,
and for each molecule m’ € S;, we create a molecule node
under the reaction node R. This will create an AND-OR
stump under node m. Unlike in MCTS [18] where multiple
calls to B(-) is needed till a terminal state during rollout,
here the expansion only requires a single call to the model.

Update: Denote the search tree 1" after expansion of node
m to be T”. Such expansion obtains the corresponding cost
information for one-step retrosynthesis. we utilize this more
direct information to update V;(-|T”) of all other relevant
nodes to provide a more accurate estimation of total cost.

3.3. Design of V;(m|T)

To properly design V;(m|T), we borrow the idea from A* al-
gorithm. A* algorithm is a best-first search algorithm which
uses the cost from start g(-) together with the estimation
of future cost A(+) to select move. When such estimation
is admissible, it will be guaranteed to return the optimal
solution. Inspired by the A* algorithm, we decompose the
value function into two parts:

Vi(m|T) = ge(m|T') + hy(m|T) 3)
where g, (m|T') is the cost of current reactions that have hap-
pened in 7', if m should be in the final route, and h,(m|T’)
is the estimated cost for future reactions needed to complete
such planning. Instead of explicitly calculate them sepa-

rately, we show an equivalent but simpler way to calculate
Vi (+|T) directly.

Specifically, we first define V,,,(m|@), which is a boundary
case of the value function oracle V' that simply tells how
much cost is needed to synthesize molecule m. For the
simplicity of notation, we denote it as V,,,. Then we define
the reaction number function rn(-|T") : V(T) — R that is
inspired by proof number but with different purpose:
rm(RIT) = ¢(R)+ Z rn(m|T)
mé&ch(R)

Vins m € F(T)
mingecp(m) ™(R|T), otherwise

rn(m|T) = {

Learning Retrosynthetic Planning with Chemical Reasoning

I—» (a) Selection

Pick a frontier node with the
best V,(m|T)

AND-OR stump

» (b) Expansion

Expand the node with an

1
» (c) Update

Propagate the values to
related nodes

Figure 1. Retro™ algorithm framework. We use circles to represent molecule nodes, and squares to represent reaction nodes. The
left-most figure is an example: Vi(f|T) = g¢(f|T) + he(f|T), where g:(f|T) = ¢(P) + c¢(R), and hy(f|T) = Vo + Ve + Vi + Vi,

where rn(R|T) and rn(m/|T) calculate for reaction node
and molecule node, respectively. The reaction number
tells the minimum estimated cost needed for a molecule
or reaction to happen in the current tree. We further de-
fine pr(u|T) : V(T) — V(T) to get the parent node of
u, and A(u|T) be all the ancestors of node u. Note that
pr(m|T) € V'(T),VYm € V™(T) and vise versa. Then
function V;(m|T") will be:
>

Vim|T) =
reA(m|T) NV (T)
+ >

m’eV™(T),pr(m’)eA(m|T)
The first summation calculates all the reaction cost that has
happened along the path from node m to root. Additionally,
VR € A(m|T)NV"(T), the child node m’ € ch(R) should
also be synthesized, as each such reaction node R is an AND
node. This requirement is captured in the second summation
of Eq (5). We can see that implicitly g;(m|T") sums up the
cost associated with the reaction nodes in this route related
to m, and h,(m|T") takes all the terms related to V. in Eq (4).

e(r)

rn(m/|T) (5)

In Figure 1 we demonstrate the calculation of V;(m|T') with
a simple example. Notice that we can compute the parts that
relevant to g:(-|T") with existing information. But we can
only estimate the part of h;(-|T") since the required reactions
are not in the search tree yet. We will show how to learn
this future estimation in Section 4.

4. Estimating V/,, from planning solutions

Retro™ requires the value function oracle V,,, to compute
Vi (+|T) for node selection. However in practice it is impos-
sible to obtain the exact value of V,,, for every molecule m.
Therefore we try to estimate it from previous planning data.

Specifically, we construct retrosynthesis routes for feasible
molecules in Dy,4in, Where the available set of molecule M
is also given beforehand. The specific construction strategy
will be covered in Appendix E.1.2. The resulting dataset
will be Rirain = {rt; = (m4,v;, Ri, B(m;))}, where each

tuple rt; contains the target molecule m;, the best entire
route cost v;, the one-step retrosynthesis candidates B(m;)
which also contains the true one-step retrosynthesis R; used
in the planning solution.

The learning of V,,, consists of two parts, namely the value
fitting which is a regression 10ss L.cy(rt;) = (Vin, — v;)?
and the consistency learning which maintains the partial
order relationship between best one-step solution R; and
other solutions (R;,S;, c(R;)) € B(m,):

Leon(rt;, Rj) = max ¢ 0,v; + € — c¢(R;) — Z Vi
m’/€ES;

(6)
where € is a positive constant margin to ensure r; has higher
priority for expansion than its alternatives even if the value
estimates have tolerable noise. The overall objective is:

min ETtiNRtmin ‘C”‘Eg (Tti) +

Vi

AER; ~B(mi)\{R:} [Leon (T3, Rj)]} (7

where A (default: A = 1) balances these two losses.

5. Experiments

5.1. Results on small molecules

We compare Ret ro™* against DFPN-E [11], MCTS [18] and
greedy Depth First Search (DFS) on product molecules in
test route dataset described in Appendix E.1.2. We use route
quality and planning efficiency to evaluate the algorithm.

Performance summary: The performances of all algo-
rithms are summarized in Table 1. Under the time limit of
500 one-step calls, Ret ro* solves 31% more test molecules
than the second best method, DFPN-E. Among all the solu-
tions given by Ret ro*, 50 of them are shorter than expert
routes, and 112 of them are better in terms of the total costs.

Influence of time limit: To show the influence of time
limit on performance, we plot the success rate against the

Learning Retrosynthetic Planning with Chemical Reasoning

100 Retro*
Retro*-0
DFPN-E+
80 DFPN-E
B MCTS+
MCTS /
60 Greedy NC (CO) Cele [nH] c2ecencl2

o l

N[CeeH] (Cele nif] e2eeenc12) € (=0)0
Length Cost

Number of best routes in terms of length/cost

20

o

Coclecezne (-c3cce (OC) ¢ (F) e3) nc (€ (=0) NC (CO) Cele [k cdccenc3d) c2el

Cocleeezne (-c3eee (OC) ¢ (F) e3) ne (€ (=0) 0) c2c1

cc (¢)€ (=0)C (=0)N2 caceoc

NC (CO) Cele [nH] c2ccencl2
lo.01
CC(=0)NC (CO) CelenH] c2ecencl2
lo.61
€COC (=0) C (Cele [nf] c2ccencl2) NE (C) =0

T

Cocleee (NC (=0) c2eec (OC) ¢ (F) c2) ¢ (€ (=0) € (=0) 0) c1

€COC (=0) € (Cele [nH] c2ecenc2) (NG (C)=0) € (=0) OCC

N (¢) Cele [nH]c2eeen

Figure 2. Left: Counts of the best solutions among all algorithms in terms of length/cost; Mid: Sample solution route from Retro™.
Numbers on the edges are the likelihoods of the reactions. Yellow nodes are building blocks; Right: The corresponding dotted box part in

the expert route, much longer and less probable than the solution.

Retro*
Retro*-0

—o— DFPN-E+ —e— MCTS+
DFPN-E MCTS

—e— Greedy

1.0

0.81

o
o

Success rate
o
n

0.24

0.0

0 100 200 300 400 500
Number of one-step model calls

Figure 3. Influence of time limit on performance.
number of one-step model calls in Figure 3. We can see
that Ret ro* not only outperforms baseline algorithms by a
large margin at the beginning, but also is improving faster
than the baselines, enlarging the performance gap as the
time limit increases.

Solution quality: To evaluate the overall solution qual-
ity, for each test molecule, we collect solutions from all
algorithms, and compare the route lengths and costs (see
Figure 2-left). We only keep the best routes (could be mul-
tiple) for each test molecule, and count the number of best
routes in total for each method. We find that in terms of
total costs, Ret ro* produces 4x more best routes than the
second best method. Even for the length metric, which is
not the objective Ret ro* is optmizing for, it still achieves
about the same performance as the best method.

Ablation study: We also conduct an ablation study to under-
stand the importance of the learning component in Ret ro*
by evaluating its non-learning version Ret ro*-0, learning-
strengthened baselines MCTS+ and DFPN-E+. Please refer
to Appendix E.2 for more discussions.

As a demonstration for Ret ro*’s ability to find high-quality
routes, we illustrate a sample solution in Figure 2-mid,
where each node represents a molecule. The target molecule
corresponds to the root node, and the building blocks are in
yellow. The numbers on the edges indicates the likelihoods

of successfully producing the corresponding reactions in
realworld. The expert route provided shares the exactly
the same first reaction and the same right branch with the
route found by our algorithm. However, the left branch
(Figure 2-right) is much longer and less probable than the
corresponding part of the solution route, as shown in the dot-
ted box region in Figure 2-mid. Please refer to Appendix F
for more sample solution routes and search tree visualiza-
tions.

5.2. Results on polymers

Retrosynthesis for polymers shares roughly the same set-
ting as small molecules, except that additional structural
constraints are imposed on the first search step, the polymer-
ization reaction. Details on the additional constraints, the
problem formulation of polymer retrosynthesis, the adapted
polymer induction technique for dealing with structural con-
straints, and PolyRet ro are presented in Appendix I.

% of monomers recovered in top-k prediction
Recursive

60 Synthesizability

50
°
v —— PolyRetro
% 40 PolyRetro-USPTO
9 —— Random Proposal
o 30 —— Transformer
xX

20

10 f

0

0 10 20 30 40 50

Top-k
Figure 4. Percentages of monomers recovered in top-k prediction.

We evaluate the performance of PolyRetro in a real-
world polymer dataset. The monomer recovery result in
Figure 4 demonstrate our method’s dominating performance
over all baselines. More details are presented in Appendix J.

Learning Retrosynthetic Planning with Chemical Reasoning

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

Rdkit: Open-source cheminformatics. URL http:
//www.rdkit.org.

Allis, L. V., van der Meulen, M., and Van Den Herik,
H. J. Proof-number search. Artificial Intelligence, 66
(1):91-124, 1994.

Chen, B., Dai, B., Lin, Q., Ye, G., Liu, H., and Song,
L. Learning to plan in high dimensions via neural
exploration-exploitation trees. In International Con-
ference on Learning Representations, 2020.

Chen, B., Li, C., Dai, H., and Song, L. Retro*:
Learning retrosynthetic planning with neural guided
a* search. In The 37th International Conference on
Machine Learning (ICML 2020), 2020.

Coley, C. W., Rogers, L., Green, W. H., and Jensen,
K. F. Computer-assisted retrosynthesis based on
molecular similarity. ACS Central Science, 3(12):
1237-1245, 2017.

Dai, H., Li, C., Coley, C., Dai, B., and Song, L. Ret-
rosynthesis prediction with conditional graph logic
network. In Advances in Neural Information Process-
ing Systems, pp. 8870-8880, 2019.

Erol, K. Hierarchical task network planning: formal-
ization, analysis, and implementation. PhD thesis,
1996.

Guez, A., Weber, T., Antonoglou, I., Simonyan, K.,
Vinyals, O., Wierstra, D., Munos, R., and Silver, D.
Learning to search with MCTSnets. arXiv preprint
arXiv:1802.04697, 2018.

Hart, P. E., Nilsson, N. J., and Raphael, B. A formal
basis for the heuristic determination of minimum cost
paths. [IEEE transactions on Systems Science and
Cybernetics, 4(2):100-107, 1968.

Karpov, P., Godin, G., and Tetko, I. A transformer
model for retrosynthesis. 2019.

Kishimoto, A., Buesser, B., Chen, B., and Botea, A.
Depth-first proof-number search with heuristic edge
cost and application to chemical synthesis planning. In

Advances in Neural Information Processing Systems,
pp. 7224-7234, 2019.

Kocsis, L. and Szepesvari, C. Bandit based Monte-
Carlo planning. In European conference on machine
learning, pp. 282-293. Springer, 2006.

Liu, B., Ramsundar, B., Kawthekar, P., Shi, J., Gomes,
J., Luu Nguyen, Q., Ho, S., Sloane, J., Wender, P.,
and Pande, V. Retrosynthetic reaction prediction using

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

neural sequence-to-sequence models. ACS Central
Science, 3(10):1103-1113, 2017.

Rogers, D. and Hahn, M. Extended-connectivity fin-
gerprints. Journal of chemical information and model-
ing, 50(5):742-754, 2010.

Schreck, J. S., Coley, C. W., and Bishop, K. J. Learn-
ing retrosynthetic planning through simulated experi-
ence. ACS Central Science.

Segler, M., Preul}, M., and Waller, M. P. Towards”
alphachem”: Chemical synthesis planning with tree
search and deep neural network policies. arXiv
preprint arXiv:1702.00020, 2017.

Segler, M. H. and Waller, M. P. Neural-symbolic
machine learning for retrosynthesis and reaction pre-
diction. Chemistry—A European Journal, 23(25):5966—
5971, 2017.

Segler, M. H., Preuss, M., and Waller, M. P. Planning
chemical syntheses with deep neural networks and
symbolic ai. Nature, 555(7698):604, 2018.

Silver, D., Huang, A., Maddison, C. J., Guez, A.,
Sifre, L., Van Den Driessche, G., Schrittwieser, J.,
Antonoglou, 1., Panneershelvam, V., Lanctot, M., et al.
Mastering the game of GO with deep neural networks
and tree search. nature, 529(7587):484, 2016.

Silver, D., Schrittwieser, J., Simonyan, K.,
Antonoglou, I., Huang, A., Guez, A., Hubert,
T., Baker, L., Lai, M., Bolton, A., et al. Mastering the
game of GO without human knowledge. Nature, 550
(7676):354-359, 2017.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J.,
Jones, L., Gomez, A. N., Kaiser, L., and Polosukhin,
I. Attention is all you need. In Advances in neural
information processing systems, pp. 5998-6008, 2017.

Yang, K. and Deng, J. Learning to prove theorems
via interacting with proof assistants. arXiv preprint
arXiv:1905.09381, 2019.

http://www.rdkit.org
http://www.rdkit.org

Learning Retrosynthetic Planning with Chemical Reasoning

A. More Backgrounds
A.1. One-step retrosynthesis

Existing one-step retrosynthesis roughly fall into two categories, either template-based or template-free. Each chemical
reaction is associated with a reaction template that encodes how atoms and bonds change during the reaction. Given
a target product, template-based methods predict the possible reaction templates, and subsequently apply the predicted
reaction templates to target molecule to get corresponding reactants. Existing methods include retrosim [5], neuralsym [17]
and GLN [6]. Though conceptually straightforward, template-based methods need to deal with tens or even hundreds of
thousands of possible reaction templates, making the classification task hard. Besides, templates are not always available for
chemical reactions. Due to these reasons, people have also been developing template-free methods that could directly predict
reactants. Most of existing methods employ seq2seq models like LSTM [13] or Transformer [10] from neural machine
translation literature.

However, MCTS-based methods has several limitations in this setting:

e Each tree node corresponds to a set of molecules instead of single molecule. This addtional combinatorial aspect make
the representation of tree node, and the estimation of its value even harder. Furthermore, reactions do not explicilty appear
as nodes in the tree, which prevents their algorithm from exploiting the structure of subproblems.

e As the algorithm depends on online value estimation, the full rollout from vanilla MCTS may not be efficient for the
planning need. Furthermore, the algorithm can not exploit historical data in that many good retrosysthesis plans may have
been found previously, and “intuitions” on how to plan efficiently may be learned from these histories.

For quantitative evaluation, they have employed numerous domain experts to conduct A-B tests over methods proposed by
their algorithm and other baselines.

A.2. Monte Carlo Tree Search

@ [Bm > (ed,e)] @ O molecule
i
{m,a, b} D reaction
{a,b,c,d} () (@ 0,

Figure 5. Left: MCTS [18] for retrosynthesis planning. Each node represents a set of molecules. Orange nodes/molecules are available
building blocks; Right: AND-OR stump illustration of B(m) = P, Q. Reaction P requires molecule ¢ and d. Reaction @ requires
molecule f. Either P or () can be used to synthesize m.

The Monte Carlo Tree Search (MCTS) has achieved ground breaking successes in two player games, such as GO [19, 20]. Its
variant, UCT [12], is especially powerful for balancing exploration and exploitation in online learning setting, and has been
employed in Segler et al. [18] for retrosynthesis planning. Specifically, as illustrated in Figure 5, the tree search start from
the target molecule ¢. Each node w in the current search tree T represents a set of molecules M,,. Each child node v € ch(u)
of u is obtained by selecting one molecule m € M,, and a one-step retrosynthesis reaction (R, Syv, ¢ (Ruy)) € B(m),
where the resulting node v contains molecule set M, = (Sy, U M,,) \ {m} \ Z.

Despite its good performance, MCTS formulation for retrosynthesis planning has several limitations. First, the rollout needed
in MCTS makes it time-consuming, and unlike in two-player zero-sum games, the retrosynthesis planning is essentially a
single player game where the return estimated by random rollouts could be highly inaccurate. Second, since each tree node
is a set of molecules instead of a single molecule, the combinatorial nature of this representation brings the sparsity in the
variance estimation.

A.3. Proof Number Search and Variants

The proof-number search (PNS) [2] is a game tree search that is designed for two-player game with binary goal. It tries to
either prove or disprove the root node as fast as possible. In the retrosynthesis planning scenario, this corresponds to either
proving the target molecule ¢ by finding a feasible planning path, or concluding that it is not synthesizable.

Learning Retrosynthetic Planning with Chemical Reasoning

AND-OR Tree: The search tree of PNS is an AND-OR tree 7', where each AND node needs all its children to be proved,
while OR node requires at least one to be satisfied. Each node u € T is associated with a proof number pn(u) that defines the
minimum number of leaf nodes to be proved in order to prove u. Similarly, the disproof number dn(u) finds the minimum
number of leaf nodes needed to disprove u. With such definition, we can recursively define these numbers for internal nodes.
Specifically, for AND node u,

pn(u) = ZUECh(u) pn(v)7 dn(u’) = minvech(u) dn(v)
and for proved nodes: pn(u) = 0, dn(u) = +o0 (8)
and for OR node u, we have
pTL('LL) = minUEc}L(u) pn(”)? dn(u) = Z’u@ch(u) dn(v)
and for disproved node: pn(u) = 400, dn(u) = 0)

Represent retrosynthesis planning using AND-OR tree: As illustrated in Figure 5, the application of one-step retrosyn-
thesis model B on molecule m can be represented using one block of AND-OR tree (denoted as AND-OR stump), with
molecule node as ’OR’ node and reaction node as ’AND’ node. This is because a molecule m can be synthesized using
any one of its children reactions (or-relation), and each reaction node requires all of its children molecules (and-relation) to
be ready.

The search of PNS starts from the root node every time, and selects the child node with either minimum proof number or
minimum disproof number, depends on whether the current node is an OR node or AND node, respectively. The process
ends when a leaf node is reached, which can be either reaction or molecule node to be expanded. And after one step of
retrosynthesis expansion, all the pn(-) and dn(-) of nodes along the path back to the root will be updated. The two-player
game in this sense comes from the interleaving behavior of selecting proof and disproof numbers, where the first ‘player’
tries to prove the root while the second ‘player’ tries to disprove it. As both of the players behave optimally when the
proof/disproof numbers are accurate, such perspective would bring the efficiency for finding a feasible synthesis path or
prove that it is not synthesizable.

Variant: There have been several variants to improve different aspects of PNS, including different traversal strategy,
different initialization methods of pn(-) and dn(-) for newly added nodes. The most recent work DFPN-E [11] builds on
top of the depth-first variant of PNS with an additive cost in addition to classical update rule in Eq (9). Specifically, for an
unsolved OR node,

pn(u) = min (h(u,v) + pn(v)) (10)
vEch(u)

Here h(u,v) is the function of the cost of corresponding one-step retrosynthesis. Together with manually defined thresholds,
this method addresses the lopsided problem in retrosynthesis planning, i.e., the imbalance of branching factor between AND
and OR nodes.

The variants of PNS has shown some promising results over MCTS for retrosynthesis planning. However, the two-player
game formulation is designed for the speed of a proof, not necessarily the overall solution quality. Moreover, existing works
rely on human expert to design pn(-), dn(-) and thresholds during search. This makes it not only time-consuming to tune,
but also hard to generalize well when solving new target molecule ¢ or dealning with new one-step model or reaction data.

Our proposed Retro* is a retrosynthetic planning algorithm that works on the AND-OR search tree. It is significantly
different from PNS which is also based on AND-OR tree, or other MCTS based methods in the following ways:

e Retro* utilizes AND-OR tree for single player game which only utilizes the global value estimation. This is different
from PNS which models the problem as rwo-player game with both proof numbers and disproof numbers. The distinction
of the objective makes Ret ro* advantageous in finding best retrosynthetic routes.

e Retro™ estimates the future value of frontier nodes with neural network that can be trained using historical retrosynthesis
planning data. This is different from the expensive rollouts used in Segler et al. [18], or the human designed heuristics
in Kishimoto et al. [11]. This not only enables more accurate prediction during expansion, but also generalizes the
knowledge learned from existing planning paths.

Learning Retrosynthetic Planning with Chemical Reasoning

B. More details of Retro*

B.1. Retro™ algorithm

Algorithm 1: Retro*(t)
1 Initialize T = (V, &) with V « {t}, £ < 0;
2 while route not found do
3 Mpext < ATGMIN,, ¢ 7y Vi (m);
{Ri7 Sia C(RL)}ic:l — B(mneact);
fori < 1to k do

Add R; to T under m ezt

for j + 1to |S;| do

| Add Sj; to T under R;;

e N & &

9 | Update V;(m) for m in F(T);

10 return route;

B.2. Updating V;(m|T")
After a node m is expanded, there are several components needed to be updated to maintain the search tree state.

Update rn(-|T): Following Eq (4), the reaction number for newly created molecule nodes u under the subtree rooted at m
will be V,,, and the reaction nodes R € ch(m) will have the cost ¢(R) added to the sum of reaction numbers in children.
After that, all the nodes u € A(m/|T") U {m} would potentially have the reaction number updated following Eq (4). Thus
this process requires the computation complexity to be O(depth(T")). However in our implementation, we can update these
nodes in a bottom-up fashion that starts from m, and stop anytime when an ancestor node value doesn’t change. This would
speed up the update.

Update V;(-|T): Let A'(m|T) C (A(m|T) U {m}) N V™ (T) be the set of molecule nodes that have reaction number being
updated in the stage above. From Eq (5) we can see, for any molecule node v € F(T), V;(u|T) will be recalculated if
{m’ :pr(m’) € A|T)} N A'(m|T) # 0.

Remark: The expansion of a node m can potentially affect all other nodes in F(7') in the worst case. However the
expansion of a single molecule node m will only affect another node v in the frontier when it is on the current best synthesis
solution that composes V;(v|T'). For the actual implementation, we use efficient caching and lazy propagate mechanism,
which will guarantee to only update the V;(v|T") when it is necessary. The implementation details of both above updates can
be found in Appendix C.

B.3. Extension: Retro™* on graph search space

We have been mainly illustrating the technique on a tree structured space. As the retrosynthesis planning is essentially
performend on a directed graph (i.e., certain intermediate molecules may share the same reactants, which may further reduce
the actual cost), the above calculation can be extended to the general bipartite graph G with edges connecting V™ (G) and
V" (G). Due to the potential existence of loops, the calculation of Eq (4) will be performed using shortest path algorithm
instead. As there will be no negative loops, shortest path algorithm will still converge. By viewing the search space as tree
rather than graph, we may possibly find sub-optimal solution due to the repetition in state representation. However, as loopy
synthesis is rare in real world, we mainly focus on the tree structured search in this paper, and will investigate this extension
to bipartite graph space search in future work.

B.4. Represention of V,,

To parameterize V,,, for any molecule m, we first compute its Morgan fingerprint [14] of radius 2 with 2048 bits, and feed it
into a single-layer fully connected neural network of hidden dimension 128, which then outputs a scalar representing V/,,,.

Learning Retrosynthetic Planning with Chemical Reasoning

C. Implementation details in the update phase

(a) Compute values for new nodes L (b) Update reaction ancestor nodes and (c) Update molecule ancestor nodes and _|
molecule nodes in sibling sub-tree halt the update process if not updated © Expanded (Mpext)
D (O Being updated
D O Updated

Figure 6. Illustration for the update process. Three phases correspond to line 1-8, line 11-16, and line 17-21 in Algorithm 2.

In this section we describe the algorithm details in the update phase of Ret ro*. The goal of the update phase is to compute
the up-to-date V;(m|T') for every molecule node m € F(T'). To implement efficient update, we need to cache V;(m|T")
for all m € V™ (T'). Note that from Eq (5), we can observe the fact that sibling molecule nodes have the same V;(m|T),
i.e. Vi(mg|T) = Vi(my|T) if pr(mg|T) = pr(ms|T). Therefore instead of storing the value of V;(m|T) in every molecule
node m, we store the value in their common parent via defining V,(R|T") = V,(m|T) if R = pr(m|T) for every reaction
node R € V"(T).

In our implementation, we cache V;(R|T") for all reaction nodes R € V" (T') and cache rn(v|T) for all nodes v € V(T).
Caching values in this way would allow us to visit each related node only once for minimal update.

Algorithm 2: Update(myeqr, { Ri, Si, c(Ri) o) !
1 fori <+ 1to kdo
2 for m € S; do
3 L rn(m) < Vi
rn(R;) < ¢(R;) + Eme&_ rn(m);
Vi(R;) < Vi(pr(mneat)) — mn(Mneat) + 1m0(R;);
new_rn < mingegq o k) T(R);
delta < new_rn — rn(Mpegt);
T (Mpest) < NEw_rn;

[BN

A=)

Meurrent < Mpext>

10 while delta # 0 and meyyrent is not root do
11 Rcurrent — pr(mcuTrent);

12 Tn(Rcurrent) — Tn(Rcurrent) + delta;
13 V;E(Rcurrent) <~ V;&(Rcurrent) + delta;
14 for m € ch(Reyrrent) do

15 L if m is not meyrrent then

16 | UpdateSibling(m, delta);

17 Meyrrent < pT(Rcur'rent);

18 delta = 0;

19 if rn(Reurrent) < T(Meyrrent) then

20 L delta — Tn(Rcurrent) - Tn(mcurrent);
21 Tn(mcurrent) — 'rn(Rcurrent);

The update function is summarized in Algorithm 2 and illustrated in Figure 6, which takes in the expanded node m,¢4¢

and the expansion result { R;, S;, ¢(R;)}*_,, and performs updates to affected nodes. We first compute the values for new

"For clarity, we omit the condition on T in the notations.

Learning Retrosynthetic Planning with Chemical Reasoning

reactions according to Eq (4) and (5) in line 1-8. Then we update the ancestor nodes of m,.,+ in a bottom-up fashion in
line 9-21. We also update the molecule nodes in the sibling sub-trees in line 16 and Algorithm 3.

Algorithm 3: UpdateSibling(m, delta)
1 rn(m|T) < rn(m|T) + delta;

2 for R € ch(m|T) do

3 for m’ € ch(R|T) do

4 L UpdateSibling(m/, delta);

Our implementation visits a node only when necessary. When updating along the ancestor path, it immediately stops when
the influence of the expansion vanishes (line 10). When updating a single node, we use a O(1) delta update by leveraging the
relations derived from Eq (4) and (5), avoiding a direct computation which may require O(k) or O(depth(7")) summations.

Learning Retrosynthetic Planning with Chemical Reasoning

D. Guarantees on finding the optimal solution

Theorem 1 Assuming V,, or its lowerbound is known for all encountered molecules m, Algorithm 1 is guaranteed to
return an optimal solution, if the halting condition is changed to “the total costs of a found route is no larger than

argmin,, e 77y Ve(m)”.

Remark 1: If we define the cost of a reaction to be its negative log-likelihood, then 0 is the lowerbound of V;,, for any
molecule m. The induced algorithm is guaranteed to find the optimal solution.

Remark 2: In practice, due to the limited time budget, we prefer the algorithm to return once a solution is found.

Since Retro* is a variant of the A* algorithm, we can leverage existing results to prove the theoretical guarantees for
Retro*. In this section, we first state the assumptions we make, and then prove the admissibility (Theorem 1) of Retro*.

The theoretical results in this paper build upon the assumption that we can access ‘A/m, which is a lowerbound for V,,, for all
molecules m. Note that this is a weak assumption, since we know 0 is a universal lowerbound for V,,.

As we describe in Eq (3), V;(m|T) can be decomposed into g;(m|T") and h:(m|T'), where g;(m|T') is the exact cost of the
partial route through m which is already in the tree, and h;(m|T") is the future costs for frontier nodes in the route which is

a summation of a series of V,s. In practice we use Vj,, in the summation, and arrive at ht(m|T) which is a lowerbound of
hi(m|T), i.e. the following lemma.

Lemma 2 Assuming V,, or its lowerbound is known for all encountered molecules m, then the approximated future costs
ht(m|T') in Ret ro* is a lowerbound of true hy(m|T).

We prove it with existing results in A* literature.

Proof Combine Lemma 2 and Theorem 1 in the original A* paper [9]. |

Learning Retrosynthetic Planning with Chemical Reasoning

E. Retro* experiment details

E.1. Creating benchmark dataset
E.1.1. USPTO REACTION DATASET

We use the publicly available reaction dataset extracted from United States Patent Office (USPTO) to train one-step model
and extract synthesis routes. The whole dataset consists of ~ 3.8 M chemical reactions published up to September 2016.
For reactions with multiple products, we duplicate them into multiple ones with one product each. After removing the
duplications and reactions with wrong atom mappings, we further extract reaction templates with RDChiral ? for all reactions
and discard those whose reactants cannot be obtained by applying reaction templates to their products. The remaining
~ 1.3 M reactions are further split randomly into train/val/test sets following 80%/10%/10% proportions.

With reaction data, we train a template-based MLP model [17] for one-step retrosynthesis. Following literature, we formulate
the one-step retrosynthesis as a multi-class classification problem, where given a molecule as product, the goal is to predict
possible reaction templates. Reactants are obtained by applying the predicted templates to product molecule. There are in
total ~ 380K distinct templates. Throughout all experiments, we take the top-50 templates predicted by MLP model and
apply them on each product to get corresponding reactant lists.

E.1.2. EXTRACTING SYNTHESIS ROUTES

To train our value function and quantitatively analyze the predicted routes, we construct synthesis routes based on USPTO
reaction dataset and a list of commercially available building blocks from eMolecules 3. eMolecules consists of 231 M
commercially available molecules that could work as ending points for our searching algorithm.

Given the list of building blocks, we take each molecule that have appeared in USPTO reaction data and analyze if it
can be synthesized by existing reactions within USPTO training data. For each synthesizable molecule, we choose the
shortest-possible synthesis routes with ending points being available building blocks in eMolecules.

We obtain validation and test route datasets with slightly different process. For validation dataset, we first combine train
and validation reaction dataset, and then repeat aforementioned extraction procedure on the combined dataset. Since we
extract routes with more reactions, synthesizable molecules will include those who could not be synthesized with original
reactions and those who have shorter routes. We exclude molecules with routes of same length as in training data, and pack
the remaining as validation route dataset. We apply similar procedure to test data but make sure that there is no overlap
between test and training/validation set.

We further clean the test route dataset by only keeping the routes whose reactions are all covered by the top-50 predictions
by the one-step model. To make the test set more challenging, we filter out the easier molecules by running a heuristic-based
BFS planning algorithm, and discarding the solved molecules in a fixed time limit. After processing, we obtain 299202
training routes, 65274 validation routes, 189 test routes and the corresponding target molecules.

E.2. Detailed results

We compare Ret ro* against DFPN-E [11], MCTS [18] and greedy Depth First Search (DFS) on product molecules in test
route dataset described in Appendix E.1.2. Greedy DFS always prioritizes the reaction with the highest likelihood. MCTS is
implemented with PUCT, where we used the reaction probability provided by the one-step model as the prior to bias the
search.

We measure both route quality and planning efficiency to evaluate the algorithm. To measure the quality of a solution route,
we compare its total cost as well as its length, i.e. number of reactions in the route. The cost function is defined as the
negative log-likelihood of the reaction. Therefore, minimizing the total costs is equivalent to maximizing the likelihood of
the route. To measure planning effiency, we use the number of calls to the one-step model (= 0.3s per call) as a surrogate of
time (since it will occupy > 99% of running time) and compare the success rate under the same time limit.

Performance summary: The performances of all algorithms are summarized in Table 1. Under the time limit of 500
one-step calls, Ret ro* solves 31% more test molecules than the second best method, DFPN-E. Among all the solutions
given by Retro*, 50 of them are shorter than expert routes, and 112 of them are better in terms of the total costs. We also

https://github.com/connorcoley/rdchiral
*http://downloads.emolecules.com/free/2019-11-01/

https://github.com/connorcoley/rdchiral
http://downloads.emolecules.com/free/2019-11-01/

Learning Retrosynthetic Planning with Chemical Reasoning

Algorithm Retro* Retro*-0 DFPN-E+ DFPN-E MCTS+ MCTS Greedy DFS
Successrate 86.84% 79.47% 53.68% 55.26% 35.79% 33.68% 22.63%

Time 156.58 208.58 289.42 279.67 365.21 370.51 388.15
Shorter routes 50 52 59 59 18 14 11
Better routes 112 102 22 25 46 41 26

Table 1. Performance summary. Time is measured by the number of one-step model calls, with a hard limit of 500. The number of shorter
and better routes are obtained from the comparison against the expert routes, in terms of number of reactions and the total costs.

conduct an ablation study to understand the importance of the learning component in Ret ro* by evaluating its non-learning
version Ret ro*-0. Retro*-0 is obtained from Ret ro* by setting V,,, to 0, which is a lowerbound of any valid values.
Comparing to baseline methods, Ret ro*-0 is also showing promising results. However, it is outperformed by Ret ro* by
6% in terms of success rate, demonstrating the performance gain brought by learning from previous planning experience.

To find out whether MCTS and DFPN-E can benefit from the learned value function oracle V,,, in Ret ro*, we replace
the reward estimation by rollout in MCTS and the proof number initialization in DFPN-E by the same V,,,, calling the
strengthened algorithms MCTS+ and DFPN-E+. Value function helps MCTS as expected due to having a value estimate
with less variance than rollout. The performance of DFPN-E is not improved because we don’t have a good initialization of
the disproof number.

Influence of time limit: To show the influence of time limit on performance, we plot the success rate against the number of
one-step model calls in Figure 3. We can see that Ret ro* not only outperforms baseline algorithms by a large margin at the
beginning, but also is improving faster than the baselines, enlarging the performance gap as the time limit increases.

Solution quality: To evaluate the overall solution quality, for each test molecule, we collect solutions from all algorithms,
and compare the route lengths and costs (see Figure 2-left). We only keep the best routes (could be multiple) for each
test molecule, and count the number of best routes in total for each method. We find that in terms of total costs, Retro*
produces 4 x more best routes than the second best method. Even for the length metric, which is not the objective Ret ro*
is optmizing for, it still achieves about the same performance as the best method.

As a demonstration for Ret ro*’s ability to find high-quality routes, we illustrate a sample solution in Figure 2-mid, where
each node represents a molecule. The target molecule corresponds to the root node, and the building blocks are in yellow.
The numbers on the edges indicates the likelihoods of successfully producing the corresponding reactions in realworld.
The expert route provided shares the exactly the same first reaction and the same right branch with the route found by our
algorithm. However, the left branch (Figure 2-right) is much longer and less probable than the corresponding part of the
solution route, as shown in the dotted box region in Figure 2-mid. Please refer to Appendix F for more sample solution
routes and search tree visualizations.

Learning Retrosynthetic Planning with Chemical Reasoning

F. Sample search trees and solution routes

In this section, we present two examples of the solution routes and the corresponding search trees for target molecule A and
B produced by Ret ro*.

Solution route for target molecule A/ B is illustrated in the top/bottom sub-figure of Figure 7, where a set of edges pointing

from the same product molecule to reactant molecules represents an one-step chemical reaction. Molecules on the leaf nodes
are all available.

5
M\}/}j\\)—o
J :
H <l / \ — // 1 T
\ \\
H o= | \\; o

NH3

Figure 7. Top/bottom: solution route produced by Retro* for molecule A/B. Edges point from the same product molecule to the
reactant molecules represent an one-step chemical reaction.

The search trees for molecule A and B are illustrated in Figure 8 and Figure 9. We use reactangular boxes to represent
molecules. Yellow/grey/blue boxes indicate available/unexpanded/solved molecules. Reactangular arrows are used to
represent reactions. The numbers on the edges pointing from a molecule to a reaction are the probabilities produced by the
one-step model. Due to space limit, we only present the minimal tree which leads to a solution.

Learning Retrosynthetic Planning with Chemical Reasoning

" 2

18— 25| CCOC(=0)CN)Celclntlc2ecenci

19— 26| COC(=OXCMNCel elnHc2ccenci2

20— 27| clntlc2ecen12)C(=00
21— 20| CCICNCIOC(=ONC(CONCeIclnHlezecene12

20— 20| 0=CINC(CONCelclnfeZecenc1210Ce ececel

M+ 31| CC=OINC(CONCelelntle2cccnc12

94| c1ccoct
27—+ 31| 0=CIOINC(CON et clntle2ccencl2.
95 COElece2e(e1C(=0IC(=OIN2

28— 35| CC(=0)OCC(N)Celc[nHc2ccenc12 69 _
\‘)0H’()(1(4’([(7(-01(7”(1‘?
2 30 0-ClckseaR -ONIC ORIttt
10y] ContetiEi-0=00
0004 30— 37 CEENODC-ONIC e cene GO EYC
e ——
é N e 0] COENONSCNCIOCCNC ek decenct
e ————— oo E——
n
N e 100 COClECC=00NCE

———+ 101 CCOC(=0)C(=0)e1cE(0CIECE INC(=0)elcec(OC)(Flel
M+ 41| COC(=0INCICONCelclnble2ecenci2
102 COC(=0)C(=Oe1c(OC)ceeINC=O)elccc(OCk(Flel
35— 42| NC(CO)Celc(ChnHlc2ccencl 2

103 | COCLCE2e(NC(=0)e3ec(OCKFIEINE(E1)C(=0)C2=0
3 ———————» 43 NC(COICelclnHlc2ece(Clnc1 2

> 1041 C

C0CC0CEOCE0CCOCCOT

103 C=C(C(=00)1ce(OC eceINC(=Olel cec(OC (Rl

T+ 106]0m(0410

——+ 16 NC(COC(eleeccct(elccccet ol ccceet Celclntjezccenc12

107] COC(=O)Tcee(0CI(TICt

0 e 47 NC(C=OKeIclnHIczecenc12
76 - 108 | COCece(N)(C(=0)C(=0)0k1
p——r
Jo.00, 108
42 ” —
101co
o o
78— 111 CORECR(GI=ONEZECC(O)E2O(=0I0 (00N I
u s
0.0y n2jco
45— 52| CCISICCNCCITece2lnHIce(CCNCONeznT
000, 79 o 113 COClce(NC(=Ok 2ecc(OX(FI2I(C(=0)C(=0)0K1
53] COCecE(NC(=O)eZece(OC (PRI C(=0)C(=0)0)cl
000 80, » 114 CO

000
S

551 COC(=OkIncle2ceclOCII2 e Zece(OC K12

561 CCOC(=0kInc(<2ccc(0C)(Fle2nc2cec(0CKe12 0.00)

57 COclecezne(c3eec(OCKFIIne(C(=0)0C(CNCIC) 2]
0.0

i

58 COelecc2nc(cdecc(OC)(FIedne(C(=0)0Cedeccecd)ezel
Jo.00

59 COelcecnetedecelOCH(FEIE(C(=0)0-Deze]

—

60| COelcec2nelcdecc(OCKFICCAN)c2eL
610

—— s a2i0m

0.00)

631 COctece(BO)O)ce1F

T 64 COrlceeznC(Chne(C(=0)0)c2e1

63 COCcec2ne(Clnc(C(=0)0)2e1

)

66/ COCCFcceIBOI0

——— 67| C=CCOC(=Ole I nc(<2cec(OC)(FIe2Ine2cec(0CKe12

115 COeleee(C(=0NeZece(F)ec2C(=0)C (=00l F

> 116100

117 | COc1ccelNC(=0)c2ece(Mc(P2)e(C(=0)C(=0)0)c1

120] COEcec(C(=0XChee1F

121 COC1cceNC(=0)c2cec(0C)c(E2Ie(C(=0)C (=00 el

b 1221 0=CO-DIO-]

123 COecec(C(=0INe26cc(0)ce2C(=0)C(=0)O)cc

> 124)

10-0(0-)

/| |

125 COBcec(NC(=0)e2ecc(O)e(FIc2)e(C(=0)C (=00l

> 126

127 COEcec(C(=OINe2ece(O)cc2C(=0)C(=OO)C I

/| /

oo\ |88 > 128
¥ 129 COCecENC(=O)c2eccl ORI C(=0)C(=010)c]
B 130 COS(=0N=0)0C
e 0INS-OX=0)0 ~
131 COC1cee(C(=ONe2CCc(0)ec2C(=0)C(=0)0)cc 1
711 COctcceznc c3ecclOCK(FIINEC=O)cze
0.0 9 132] Cos(-0)(=0)0C

__oo,

— o,
000
0

o

n

.00\

.00

.00

0.00

0,00

72| O=[Mal(=0)(=0)O-]

I

\\\-mu

74 COsleseznclcdocsOCIPIIN(Ce2e
75 | COelecezne(cdece(OC(MEIE(CHNIc2e
- ——wi
x, 7711011
781 COFlcee2nelc3ce(OCNNICIC(C(=0)0KZel

79| FIBIEE

1 1 b 00
¥’ B~ 800=R(0-DO0
1s1co
81 COclcecnelcdece(OC)(Fedc(C=0)zel
w— Li6ico

. S b 00
[T —
85| COclecezne(cdeec(O)e(FIcaIne(C(=010)2e]
15
B — w0
211 COS(CN=0)=0
" 87 COelece(c2ne(C(=0)0)e3ee(Fccedn2)eeF
16 2
L ————— L
231 COS(CN=0)=0
89 COeeec2netcdeceF(Fedne(C(=00)2c]
67— 90| CCOC(=O)cInclc2ecc(O)c(FIc2)ne2eec(0CKe12
911 COSEN=01=0.
B 92/ COSC)(=0)0

Figure 8. Search tree produced by Ret ro* for molecule A. Reactangular boxes/arrows represent molecules/reactions. Yellow/grey/blue

93] CCOC(=OkInct<2cec(OC)(Fle2nezeec(O)cel2

’\

133 COElccc(NC(=0)e2cc(Oe(FIc2)e(C(=0)C (=00l

indicate available/unexpanded/solved molecules. Numbers on the edges are the probabilities produced by the one-step model.

Learning Retrosynthetic Planning with Chemical Reasoning

Figure 9. Search tree produced by Ret ro* for molecule B. Reactangular boxes/arrows represent molecules/reactions. Yellow/grey/blue
indicate available/unexpanded/solved molecules. Numbers on the edges are the probabilities produced by the one-step model.

Learning Retrosynthetic Planning with Chemical Reasoning

G. Retro” for hierarchical task planning

As a general planning algorithm, Retro* can be applied to other machine learning problems as well, including theorem
proving [22] and hierarchical task planning [7] (or HTP), etc. Below, we conduct a synthetic experiment on HTP to
demonstrate the idea. In the experiment, we are trying to search for a plan to complete a target task. The tasks (OR nodes)
can be completed with different methods, and each method (AND nodes) requires a sequence of subtasks to be completed.
Furthermore, each method is associated with a nonnegative cost. The goal is to find a plan with minimum total cost to
realize the target task by decomposing it recursively until all the leaf task nodes represent primitive tasks that we know how
to execute directly. As an example, to travel from home in city A to hotel in city B, we can take either f1ight, train
or ship, each with its own cost. For each method, we have subtasks such as home — airport A, f1ight(A — B), and
airport B — hotel. These subtasks can be further realized by several methods.

As usual, we want to find a plan with small cost in limited time which is measured by the number of expansions of task
nodes. We use the optimal halting condition as stated in theorem 1. We compare our algorithms against DFPN-E, the best
performing baseline. The results are summarized in Table 2 and 3.

Time Limit | 15 | 20 | 25 | 30 | 35
Retro* .67 | 91| 96 | 98 | 1.

Retro*-0 S50 | .86 | .95 | .98 | .99
DFPN-E 02| .33 .74 | 93 | .97

Table 2. Success rate (higher is better) vs time limit.

Alg Retro* | Retro*-0 | DFPN-E
Avg. AR | 1 1 1.5
Max. AR | 1 1 39

Table 3. AR = Approximation ratio (lower is better), time limit=35.

As we can see, in terms of success rate, Ret ro* is slightly better than Ret ro*-0, and both of them are significantly better
than DFPN-E. In terms of solution quality, we compute the approximation ratio (= solution cost / ground truth best solution
cost) for every solution, and verify the theoretical guarantee in theorem 1 on finding the best solution.

Learning Retrosynthetic Planning with Chemical Reasoning

H. More Related Works

Reinforcement learning algorithms (without planning) have also been considered for the retrosynthesis problem. Schreck
et al. [15] leverages self-play experience to fit a value function and uses policy iteration for learning an expansion policy. It
is possible to combine it with a planning algorithm to achieve better performance in practice.

Learning to search from previous planning experiences has been well studied and applied to Go [19, 20], Sokoban [8] and
path planning [3]. Existing methods cannot be directly applied to the retrosynthesis problem since the search space is more
complicated, and the traditional representation where a node corresponds to a state is highly inefficient, as we mentioned in
the discussion on MCTS in previous sections.

Learning Retrosynthetic Planning with Chemical Reasoning

I. Polymer retrosynthesis with PolyRetro
I.1. Background

In this section, we focus on providing the background knowledge about molecule retrosynthesis as well as defining notations.
This serves as the building block in our polymer retrosynthesis modeling.

Given a molecule m € M where M indicates the space of molecules, the molecule retrosynthesis problem focuses on
finding a set of reactants S C M that can be used to synthesize m. Before introducing the approaches for retrosynthesis, we
first cover the background on reaction templates.

1.1.1. REACTION TEMPLATE

A reaction template 7 := o7 — v + 01 + ... + TITTI is a graph rewriting rule * that rewrites subgraph pattern o’ that

is matched with target molecule m, into 7! that appears in i-th reactant s; € S. The set of templates 7 can be extract
from existing chemical reactions in the literature. Although applying templates involves with expensive subgraph matching
between o’ and m, where itself is an NP-hard problem, such approach provides a tractable way of finding candidate set S
with chemical rules.

1.1.2. LEARNING-BASED MOLECULE RETROSYNTHESIS

The molecule retrosynthesis problem has raised increasing interest in the machine learning (ML) community, due to its
importance in chemistry and the difficulty in structured prediction setting. We here mainly focus on the ML approaches for
such problem, as some of these provide probabilistic interpretations that will be needed in our optimization framework.
Depends on the number of reaction steps needed to synthesize m, such problem can be categorized into one-step and
multi-step retrosynthesis.

One-step molecule retrosynthesis: One-step setting requires that R := S — m can be realized in one chemical reaction.
It focuses on modeling p(S|m) with or without reaction templates. As the template based one guarantees the satisfaction of
human defined rules, we use the model proposed in NeuralSym [17] for one-step prediction. Specifically in this model:
p(S|m) o< Z p(T|m)I [SubgMatch(o”, m)] (11)
TeT
where SubgMatch(-) operator checks the subgraph matching between o’ and m.

Multi-step molecule retrosynthesis The multi-step extension allows using multiple reactions R,, = {RT}ET‘ to
synthesize m, with the restriction that the reactants set S C Z C M where Z is the set of starting molecules. This is
essentially a planning problem that search through the reaction space using one-step models as expansion proposals. In our
paper, we use the Retro*[4] which is the state-of-the-art approach that provably optimizes the synthesizability of R, .

L.2. Modeling Polymer Retrosynthesis

A polymer is a large molecule composed of many repeat units. Directly using molecule retrosynthesis techniques for
polymers is not feasible, as (i) the (potentially infinite) large molecule is not feasible for existing molecule retrosynthesis
approaches; (ii) the polymer retrosynthesis has nontrivial recursive and stability contraints, which cannot be easily addressed
in existing approaches.

In the following content, we first state these constraints in Section 1.2.1, then we formally present our modeling strategy for
such problem in Section 1.2.2.
I.2.1. CONSTRAINTS FOR POLYMERS AND POLYMERIZATIONS

In chain structured polymer, each repeat unit in the polymer has two open bonds which link with neighboring units in
a chain-like structure. At the end of the chain are the end-groups. They are functional groups closely related to the
polymerization process, where the polymer is synthesized from the monomers.

In this work we focus on condensation polymerization, in which large molecules join together and lose small molecules
such as HyO/HCI (Figure 10). This type of polymerization needs to satisfy the recursive constraint (unit polymerization)

*https://www.daylight.com/dayhtml/doc/theory/theory.smarts.html

Learning Retrosynthetic Planning with Chemical Reasoning

O, OH &6 e
O, O
n n n
>_©_< S — >—< >—< + 1 HO
HO © H o] (0)

Terephthalic Acid Ethylene Glycol Polyethylene Terephthalate (PET)

Figure 10. Condensation polymerization for synthesizing PET. We use shaded color regions to highlight the monomers (light blue),
polymer (light pink), repeat unit (dark pink), end-groups (purple), and by-product (light yellow). Unit polymer is a polymer with unit
length (n = 1).

placed on the unit polymer.

Definition 3 (Recursive constraint) Given the repeat unit r with structure -A-, where we use ’-’ to represent an open bond,
which connects to the neighboring repeat unit in a long chain, the unit polymer u should be b-A-c, where b- and -c are
end-groups, and the probability of the following induced unit polymerization reaction should be positive:

UnitPolymerization(r, u) : b-A-c + b-A-c — b-A-A-c + b-c (12)

In this reaction, two unit polymers join together and lose b-c as the byproduct. In practice, we hope that the end-groups b-
and -c tend to react with each other with high probability, which makes the polymerization reaction continue to happen.
Therefore the unit polymer itself is not stable. However the monomers, which are the precursors of the unit polymer, should
satisfy the stability constraint.

Definition 4 (Stability constraint) Given the unit polymer u with structure b-A-c, the monomers m should be {b-B-b, c-C-c},
where b-B-b and c-C-c are symmetric, and u can be synthesized from m with the following reaction:

UnitPolymerSynthesis(u, m) : b-B-b + ¢-C-c — b-A-c + b-c (13)
Both the recursive and the stability constraint come from chemical insights which guide polymer synthesis.

1.2.2. POLYMER RETROSYNTHESIS MODELING

Section 1.2.1 has defined the structural constraints for polymer retrosynthesis, which are symbolic with rule definitions. In
real application, polymerization also requires the efficiency to make the entire pipeline cost efficient. With both the rule
constraints and efficiency requirement, we formulate the polymer retrosynthesis as a constrained optimization problem. We
first define molecule synthesizability below:

Definition 5 (Molecule synthesizability) A molecule m is h-synthesizable from a set of starting molecules T if and only if
there exists a series of reactions R whose initial reactants are in I, and the joint probability of reactions in R satisfy a
given lower bound h, i.e. p(R) > h.

Practically we rely on the molecule retrosynthesis algorithm presented in I.1.2 to obtain both R and p(R). Using the key
concepts defined above, we state our optimization formulation of polymer retrosynthesis problem below.

Definition 6 (Polymer Retrosynthetic Optimization) Given a target polymer represented as a repeat unit v, we want to
identify a unit polymer u, and monomers my, mo which maximize the polymerization probability with the recursive, stability,
and molecule synthesizability constraints.
max — p(u,my, ma|r) = p(ulr) - p(mi, ma|u)
U,Mmy,ms2 (14)
s. L. p(Rmng) > h.

with a positive threshold h.

The model p(u, my, ma|r) is decomposed into p(u|r) that incorporates the recursive constraint, and p(m;y, ma|u) that
incorporates the stability constraint. The formulation can be interpreted using a mathematical induction analogy. Synthesizing
the target polymer can be understood as proving the feasibility of the polymer. To “prove” the target polymer, we need to
first work on the base case, i.e., find a monomer which is synthesizable, and then prove the induction step, i.e.. maximize the
polymerization probability.

Learning Retrosynthetic Planning with Chemical Reasoning

Polymer Induction Monomer Proposal Synthesizability Check
-A- b,-A-cc ——— > b;-B;;-b; — ¢-C¢ b,-B,;-b, — ¢,-Cy-c, Accept
b,-A-c, i: b,-By-b, — c-Cuc, " byBytby — ¢-Cimcy Reject
a byByb, — €Cpcy e byByyb, — 6CyyeCy Accept
a b,-By-b, — ¢,-Cyicy Reject
b,-A-c, o o
o
Rank: P(b-A-c; | -A-) Rank: P(b-B;-by, ¢;-Ci-¢; | b-A-c) Rank: P(b;-B;-b;, ¢;-Ci-c;, b-A-c; | -A-)

Figure 11. PolyRetro beam search framework. Given the repeat unit r, we first generate unit polymer candidates v by polymer induction.
We then rank the candidates using p(u|r) and sample monomers (m1,mz2) from the top-n unit polymers. Next we re-rank the unit
polymer and monomer pair (u, m1,mz2) using the joint p(u, m1, ma|r) = p(u|r) - p(m1, m2|u) and perform the synthesizability check
on (m1,m2) using Retro*, a multi-step retrosynthesis planner. Finally the top-k results which pass the check are returned.

Although p(m1, ms|u) can be characterized using one-step molecule retrosynthesis model, directly optimizing the above
problem is nontrivial, as (i) the recursive constraint model p(u|r) which predicts a unit polymer from a repeat unit is not
available and there is not enough data in the literature to estimate such model; and (ii) the constraint of p(R,,1,m2) > h
goes through a planning algorithm that is not possible to characterize the gradient, convexity, efc.. In the next section, we
will present PolyRetro to effectively solve the constrained optimization by overcoming these difficulties.

L.3. PolyRet ro algorithm

To tackle the challenging constrained optimization problem defined in Section 1.2.2, we propose PolyRetro (Figure 11),
a learning-based search framework with minimal polymerization data involved. We first introduce the overall procedures of
the algorithm, and then cover the details in subsections.

Our main idea is based on the rejection sampling framework for solving Eq (14), which treat the molecule synthesizability
constraint as a black-box rejection criteria. Although asymptotically we can sample target solution (u,mq,ms) from
Eq (14), a good proposal algorithm is needed to keep the rejection rate low and mix fast. Since the joint probability of
(u, m1, m2) decomposes into two terms, we approximate the max operator with a beam search in two steps:

toP~Kymy maP (U, M1, M2 1) = £OP~Kyy my m,P(Mm1, ma|u)l[u € top-n{p(ulr)}] (15)
We present the modeling and inference of these two steps in the next two sections. In Section 1.3.1 we show how to generate
top-n candidate unit polymers that satisfy with recursive constraint using domain adaptation with a novel polymer induction
technique. Then in Section 1.3.2, we show the generative procedure of monomers with stability constraints. We conclude the
approach with the molecule synthesizability check in Section 1.3.3.

1.3.1. UNIT POLYMER PROPOSAL WITH DOMAIN ADAPTED POLYMER INDUCTION

In the first step of the beam search, we want to quickly generate all the feasible candidate unit polymers from the repeat unit
r. Proposing candidates that satisfy recursive constraint is hard. This involves predicting the end-groups from the repeat
units. Also note that there will not be enough data to directly learn the model p(u|r).

We observe that, it is relatively easy to obtain the one-step retrosynthesis model (one-step model for short) p(S|m) in
Eq (11) for a molecule m and there are enough small molecule chemical reactions to train such one-step model. Based on
this, we propose to perform domain adaptation using polymer induction technique (Figure 12), as explained below:

Polymer induction: the basic idea is to leverage one-step molecule retrosynthesis model to help predict the end groups of
a unit polymer. As the model p(S|m) only accepts molecules rather than repeat units, we circumvent this issue with the
following procedure:

1. Link two repeat units head-to-tail to form a double repeat unit, and add hydrogen as end-groups, i.e. H-A-A-H;
2. Loop through all the reaction templates:

(a) Apply reaction template to the double repeat unit;

Learning Retrosynthetic Planning with Chemical Reasoning

o/

0,
o] : o
O, O .
>\ () g Double Repeat Unit
*—0 [¢]

Apply reaction template l

O 0K

Reconstruct candidate l
RZ
. /.

O,
>_©_< Unit Polymer
R—d o

Figure 12. Polymer induction for generating unit polymer candidates. For each of the reaction template, we apply it to the double repeat
unit, if it can break the bond connecting two repeat units into two end-groups. These two end-groups are then being put back to the repeat
unit to reconstruct unit polymer candidates.

(b) If the result is in the form of H-A-A-H — H-A-c + b-A-H, add b-A-c to the candidate list.

The above procedure is based on the induction principle: if the base case solves (i.e., we find the unit polymer with
form b-A-c), then we can synthesize the double units b-A~A-c where the bond between two As (denoted as ~ symbol)
belongs to the reaction center. Such induction thus provides the guidance for the template based retrosynthesis: a template
T = o' — r¥ + 11 should have the subgraph o’ matched at the location that covers the bond denoted as ~. Using template
based graph rewriting with 7 and rZ’, we can obtain the end groups b and c.

Modeling p(u|r) with domain adaptation: the polymer induction step gives us a list of unit polymer and corresponding
template candidates {(T7;, b;-A-c;) } that satisfy the recursive constraint, which is actually the support of p(u|r) (i.e., samples
with non-zero probability). Given a unit polymer and template pair (v = b-A-c,T"), we formulate the corresponding joint
probability as the optimal solution of following optimization:

omin - ADicn(p(S = {uu} m = b-A-A©)[p(u.T1) +(1 =) Drc GO Ip(w. Tir)) (16)

matching one-step model matching target domain prior
where p(T') is an empirical estimation that of template prior from the limited polymer dataset, and A € (0, 1) is a factor tha
balances the two Kullback-Leibler divergences. The optimal solution is p(u = b-A-c, T'|r) = Ap({u, u} |b-A-A-c) + (1 —
A)p(T). This objective performs the domain adaptation from molecule synthesis into polymer synthesis with the following
benefits:

e With the polymer induction technique, we adapt one-step model for molecules to polymer domain.
e By interpolating between one-step model and the prior learned on target domain, we can achieve a balance between
enormous foreign domain knowledge and limited target-domain priors.

There could be multiple design choices for 5(7"). Due to the limited data in target (polymer) domain, we use kernel density
estimation with atom- and bond-counting features for simplicity.

1.3.2. MONOMER PROPOSAL UNDER STABILITY CONSTRAINT

Using domain adapted polymer induction in the above section, we can obtain top-n unit polymers {b;-A-c;};-_,and their
scores. The second step of the beam search seeks for monomers given the unit polymers. As both of them are proper
molecules, the one-step model can be directly used here:

p(mq, malu) = p(S = {ml,m2} |m = u)I [Both m; and ms are symmetric] (17)
Adding together with the scores of each unit polymer u, we can approximately get a list of feasible unit polymer and
monomers with the highest joint probability.

Learning Retrosynthetic Planning with Chemical Reasoning

1.3.3. SYNTHESIZABILITY AS FILTERING CRITERIA

Once we have the top-n list of monomers {mﬁ, mg}?zl obtained in previous two beam-search steps, we can perform
rejection step using any off the shelf multi-step retrosynthesis planner to check the synthesizability p(R.,, m,) for each
(my,mz) € {mﬁ, ms }?:1’ and return the top-£ of them which satisfies the recursive, stability and synthesizablity constraints.

This finishes the overall PolyRet ro algorithm.

Learning Retrosynthetic Planning with Chemical Reasoning

J. PolyRetro experiment

Experiment Settings. To evaluate the performance of PolyRet ro, we collect a dataset of 52 condensation polymers?,

and their corresponding synthesis recipes. For each polymer, the task is to predict the ground truth monomers and unit
polymer given the repeat unit. We split the data into 5 folds and repeat the same experimental setup 5 times to compute
the mean and standard deviation of the performance metric. Because we are targeting a few-shot learning setting and
considering we do not have enough data for testing, in each experiment, we only use one fold of data for training and hold
out the other four folds for evaluation. We use top-k recovery rate, i.e. whether the target is in the top-k prediction, on both
unit polymers and monomers to measure the performance of the algorithms.

PolyRetro Implementation. The one-step retrosynthesis model used in PolyRet ro is trained on the publicly available
reaction dataset extracted from United States Patent Office (USPTO). We use a multilayer perceptron model with one hidden
layer of size 512, which takes a 2048 dimensional molecular fingerprint [14] as input, and predicts a probability distribution
over 230k reactions templates extracted from the same dataset. Reactants can be obtained by applying the reaction templates
to the product using RDKit [1]. In the monomer retrosynthesis step, Retro* [4] employs the same model for synthesis route
search given a list of commercially available building blocks from eMolecules®, which consists of 231M commercially
available molecules.

We implement the template prior in PolyRet ro using a nonparametric Gaussian kernel density estimator with bandwidth
1. Its performance is not sensitive to the bandwidth parameter. The features are the number of atoms and edges on both side
of the template. We set A to 0.999 in Eq (16).

Baselines/Ablation Studies. We compare PolyRet ro with a Transformer [21] model which directly predicts the target
sequence (unit polymers/monomers) from the repeat unit. We also conduct an ablation study by replacing the unit polymer
proposal step in PolyRet ro with (a) sampling randomly from the support of p(u|r) (Random Proposal), and (b) using
only the one-step retrosynthesis model trained on USPTO as p(u|r) (PolyRetro-USPTO). Since learning a sequence-to-
sequence model from only a few data points is nearly impossible, we give all Transformer-based models a large advantage
by allowing the use of the test data for validation for early stopping in training.

Results. The top-k recovery rate result on unit polymers and monomers is summarized in Figure 13. PolyRet ro achieves
over 50% top-1, 71% top-30 recovery rate in unit polymer prediction, and over 50% top-5 recovery rate in monomer
prediction. The performance is significantly better than the sequence-to-sequence baseline, which is not able to learn
anything, achieving 0% top-50 recovery rate in both results, not to mention that the baseline model can see the test set
during training. This is within our expectation due to the lack of training data. With more data we should see an increase in
the number. However, end-to-end approaches still suffer from the inherent limitation of failing to address the structural
constraints.

Domain Adaptation. Knowledge transfer from small molecule reactions to unit polymerization is clearly supported by the
result, as PolyRetro and PolyRet ro-USPTO outperform the random proposal baseline by a large margin. With such
strong performance of PolyRet ro recovering the ground truth monomers, we have reason to believe the other monomers
generated by our algorithm could also be of realistic significance. Domain adaptation by incorporating template prior is also
helpful for improving the performance. With the template prior learned on one fold of data, PolyRetro is able to have a
3 — 5% gain in performance compared with PolyRet ro-USPTO when predicting unit polymers. The main reason that
PolyRetro is not improving the monomer prediction further is because of the limitation on unseen templates for one-step
retrosynthesis, which we discuss below.

Limitations. We display the performance upper bound of PolyRetro in the monomer prediction result in Figure 13.
From top to bottom, the three horizontal lines correspond to the upper bounds after addressing the recursive constraint, the
recursive and stability constraints, and all three constraints. These upper bounds are resulted from the following limitations
of the algorithm.

e Constraint Formulation. Our constraint formulations in Definition 3 and 4 describe the most common pattern for
polymerization but unable to cover all special cases. The algorithm can be improved by incorporating more chemical
knowledge.

o Unseen Reaction Templates. Since the templates for one-step retrosynthesis model are extracted from the small molecule

Shttp://www.polymerdatabase.com/polymer$20chemistry/pc$20index.html
*http://downloads.emolecules.com/free/2019-11-01/

http://www.polymerdatabase.com/polymer%20chemistry/pc%20index.html
http://downloads.emolecules.com/free/2019-11-01/

% of unit polymers recovered in top-k prediction % of monomers recovered in top-k prediction -

Recursive
et —+——
70 __Stability ______ o ___
60 60 "~ Synthesizability
50 50
° ©
v —— PolyRetro 1< —— PolyRetro
% 40 —— PolyRetro-USPTO g 40 —— PolyRetro-USPTO
9 —— Random Proposal 9 —— Random Proposal
5 30 —— Transformer - 30 —— Transformer
> SN
20 20
10 10
0 0
0 10 20 30 40 50 0 10 20 30 40 50
Top-k Top-k

Figure 13. Percentages of targets recovered by algorithms in top-k prediction. Left: unit polymers prediction using p(u|r); Right:
monomer prediction using p(u|r) - p(m1, ma|u). We also show PolyRet ro’s performance upper bounds after addressing the labeled
constraints on the right.
reactions, there could be new reaction templates which only exist in polymerization. The limitation can be alleviated by
extracting templates and training the one-step retrosynthesis model directly using polymerization data.
e Monomer Retrosynthesis. For rare cases, Retro* cannot find a synthesis path for the ground truth monomer in limited
time. This can be resolved by allowing more time for Retro* search and using a larger building block molecule set.

