
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

Enhancing Neural Mathematical Reasoning by Abductive Combination with
Symbolic Library

Anonymous Authors1

Abstract
Mathematical reasoning recently has been shown
as a hard challenge for neural systems. Abilities
including expression translation, logical reason-
ing, and mathematics knowledge acquiring ap-
pear to be essential to overcome the challenge.
This paper demonstrates that some abilities can
be achieved through abductive combination with
discrete systems that have been programmed with
human knowledge. On a mathematical reasoning
dataset, we adopt the recently proposed abductive
learning framework, and propose the ABL-Sym
algorithm that combines the Transformer neu-
ral models with a symbolic mathematics library.
ABL-Sym shows 9.73% accuracy improvement
on the interpolation tasks and 47.22% accuracy
improvement on the extrapolation tasks, over the
state-of-the-art approaches.

1. Introduction
Automatically solving natural language described math-
ematical problems has been shown very challenging,
requiring natural language understanding, mathematical
expression extraction, and complex symbolic reasoning.
Existing deep learning-related methods mainly frame these
problems as a machine translation task. A branch of the
methods explicitly encode the structural relation and try to
directly output the answers (Saxton et al., 2019; Schlag
et al., 2019). These methods have a great expression ability,
but are hard to generalize to unseen cases. Another branch
learns a mapping from the problem description to a solution
program (Wang et al., 2017; Amini et al., 2019), which ex-
plicitly encodes domain knowledge. These program-based
methods rely heavily on human labeling, which is not only
laborious, time-consuming, and error-prone. Besides, some
problems are hard to be expressed in a program format,

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

such as the varieties of probability problems (e.g., Three
letters picked without replacement from
idiidauauuiuaiduaiiu. What is prob of
sequence iaa?).

Recently, the abductive learning (Dai et al., 2019) intro-
duces a discrete logic module into a neural network with
an integrated learning procedure. The logic module uti-
lizes the logical consistency between the perception outputs
and the logic background knowledge to optimize the per-
ception module and the logic module jointly. This work
demonstrates the possibility to produce a system with both
the flexible perception power from neural networks and the
generalization power from the programmed knowledge.

In this paper, we follow the abductive learning framework
and propose a system that integrates the transformer net-
works and a mathematical symbolic library, ABL-Sym, for
automatically solving math problems. ABL-Sym firstly runs
a consistency check and correction procedure: it generates
programs from natural language descriptions and uses a pro-
gram executor to run the programs; if the program output is
inconsistent with the answer, it employs a search routine to
correct the program. ABL-Sym then learns from the prob-
lem descriptions and the corrected programs. ABL-Sym
repeats the two steps to improve its model. We evaluate
ABL-Sym on the mathematics dataset from (Saxton et al.,
2019). The results show that ABL-Sym significantly outper-
forms the previous state-of-the-art approaches: it achieves
9.72% accuracy improvement on interpolation tasks, and
47.22% accuracy improvement on extrapolation tasks.

2. Background
2.1. The Mathematics Dataset

Saxton et al. (Saxton et al., 2019) introduced a mathematics
dataset that contains a variety of math problems, including
algebra, arithmetic, numerical comparison, numerical
factorization, calculus, measurement, and probability.
Each problem is a question-answer pair, where the
question is like Let q(m) = m**3 + 2. Let
r(c) = -4*c**3 - 9. What is 18*q(f) +
4*r(f)? and the answer is like 2*f**3. Although
there may be many forms of answer sequences with the

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Enhancing Neural Mathematical Reasoning by Abductive Combination with Symbolic Library

same mathematical meaning, the evaluation criterion is
character-by-character (i.e., each question is scored by
either 0 or 1 according to whether the answer matches
the correct answer character-by-character). The dataset is
procedurally generated and consists of 56 modules, and
each module provides 2M per-generated training samples
and 10k interpolation samples. Extrapolation samples
are also provided for an additional measure of algebraic
generalization.

2.2. Sympy

Sympy (Meurer et al., 2017) is a mathematical symbolic
computing library, which contains about 300+ mathematical
functions. Although many mathematical engines can be
used, we adopt Sympy because it can conveniently get all
the appropriate mathematical functions, easily exclude non-
mathematical functions, and support direct access to the
docstrings of mathematical functions.

2.3. Related work

A mathematics dataset was released in (Saxton et al., 2019)
that analyzes the reasoning and generalization ability of
popular reasoning neural architectures such as recurrent
neural architectures and attention-augmented architectures
(i.e., Transformer (Vaswani et al., 2017)). The results show
that the learned models did not do mathematical reason-
ing well, particularly for the extrapolation zone. (Schlag
et al., 2019) incorporates the tensor-product representation
technique within the Transformer to better support the ex-
plicit representation of relation structure. They achieved
improved results than the vanilla Transformer architecture
without introducing any domain knowledge.

Program format is a typical way to represent both of the
discrete domain knowledge and the solution structure of
mathematical problems. Amini et al. (Amini et al., 2019)
released a dataset of math word problems that are densely
annotated with programs by crowd-sourcing. Based on
the dataset, they proposed a sequence-to-program model
with automatic problem categorization. Comparing with
their method, our approach applying to the dataset without
annotated programs, and moreover, we use both the neural
network and the discrete symbolic system for prediction.

Abductive learning (Dai et al., 2019) was recently proposed
for connecting a perception module with an abductive logi-
cal reasoning module using consistency optimization. The
perception module generates output, the reasoning module
checks and corrects the logical consistency, and the consis-
tency information is used to update the perception module
to generate logically more consistent output. This consti-
tutes a forward cycle. Our approach is inspired by the above
abductive learning framework, while we are addressing a
different domain.

3. ABL-Sym
In the following subsections, we introduce the program defi-
nition, the program correction, and the training procedure.

3.1. Programs

We define the program based on a domain-specific language
(DSL) instead of arbitrary Turing-complete languages to re-
duce the search space of programs. Every word in the DSL
is called an operator. All available operators form an oper-
ator space. The relationship between adjacent operators is
appropriately restricted, such as argc operators must be fol-
lowed by math operators, the number of optional variables
must be no less than argc, and argc must be an available
number of arguments to the mathematical operator.

3.1.1. OPERATOR SPACE

The operator space consists of about 400 operators, includ-
ing mathematical operators, position-aware operators, and
several auxiliary operators.

Mathematical Operators: We use Sympy as the pro-
gram executor. In Sympy, there are about 300+ functions
which are essential for solving math problems(e.g. add,
multiply, solve, diff). We consider these functions
as our mathematical operators.

Position Operators: Mathematical expressions in problem
may appear anywhere. We tokenize the problem sentence
with a simple tokenizer and use positional indexes to iden-
tify expressions. The tokenizer uses space to tokenize the
sentence and uses tokens that are not in the ordinary word
dictionary as expressions. The ordinary word dictionary
consists of non-digit words and excludes common ordinal
number words (e.g., first, second, square). In addition, we
also exclude a-z single letters because they are often used
to represent variables in math problems. After tokenizing
the problem, the positional continuous expression tokens
are merged into one token. We use pos0, pos1, pos2, ...
as positional operators to represent the positions of related
expressions.

Auxiliary Operators Functions in Sympy may have multi-
ple parameters (e.g. diff function for obtaining derivative
may have two usages: diff(x**2+x
y, x), diff(x**2+x*y, x, 2). We add argc0,
argc1, argc2, argc3 to the operator space in order to
explicitly specify the number of function parameters. Some
expressions in question do not conform to the input for-
mat of mathematical operators, and the output formats of
some operators do not conform to the answer, so we add
several additional format conversion operators and operator
wrappers into the operator space.

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Enhancing Neural Mathematical Reasoning by Abductive Combination with Symbolic Library

3.1.2. PROGRAM EXECUTOR

We build a simple program executor based on Sympy to
run programs. In a running, the program’s operators are
executed sequentially, and intermediate results are saved
in the environment through registry variables, which may
be used by later operators. If an error is encountered dur-
ing execution, execution will stop and return none, or if
execution reaches the end, return execution result.

3.1.3. PROGRAMS SEARCH PROCEDURE

The program search space is too large to find the correct pro-
grams by random search. We design an abductive learning
framework to search programs efficiently. Our framework
performs multiple iterative searches. In the first iteration,
we use a search-based method as a program generator to
generate some programs. Then, the program executor runs
the programs, and a consistency checker filters out the pro-
grams whose results are inconsistent with the answers. A
neural network model is used to learn the mapping from
the problem to the correct program. The learned model is
then used to be a better program generator to start another
iteration. In addition, we develop the following techniques
to speed up the search process further.

Warm-up Operator Distribution In math problems,
problems are often strongly related to mathematical terms
(e.g. in the derivative problems, the terms derivative,
differentiate often appear). Additionally, almost ev-
ery mathematical function in Sympy has a docstring, which
usually contains related mathematical terms. So we can
build relationships between problems and mathematical op-
erators. In this paper, we adopt (Arora et al., 2016) method
to calculate the cosine similarity between the problem de-
scription and the docstring of an operator and then normalize
by softmax to obtain the probability distribution of opera-
tors, which is used to generate the possible programs.

Curriculum Search Strategy According to whether
the problem consists of simple problems, the problems
in the Mathematics Dataset can be divided into simple
problems and compositional problems (e.g. a compositional
problem: Suppose -2*v + 1873 = 4*x -
3*x, x = 2*v - 1863. Let u = -65 + 25.
Find the common denominator of 1/6 and
v/(-920) - 8/u.). Programs for simple problem can
be found relatively easily by searching, but not for composi-
tional problem. We observe that the compositional problem
can be broken down into multiple parts, each of which is
similar to a simple problem (e.g., the above problem can be
broken down into three parts: Suppose -2*v + 1873
= 4*x - 3*x, x = 2*v - 1863#Let u = -65
+ 25#Find the common de
nominator of 1/6 and v/(-920) - 8/u).

Therefore, we use the neural network model learned from
simple problems to generate possible programs for each part
and organize them into complete programs. The program
executor then executes the programs to get results, and the
consistency checker then checks the results for correctness.
The whole search process is time-consuming, so we only
perform search on randomly generated 500k problems that
meet the qualifying conditions, and use the learned model
to generate the rest.

3.2. Neural Models

The neural network model we use is a modified version
of the original Transformer (Vaswani et al., 2017), with
a shared transformer encoder θenc and two separate trans-
former decoders θdeca and θdecp . We use the encoder θenc

with hidden states henc to encode the problem x. The de-
coders θdeca and θdecp take the shared hidden states henc and
auto-regressively generates the answer sequence and pro-
gram sequence respectively. During training, the decoders
receive the shifted targets while during inference, we use the
previously generated symbols with the highest probability.
We treat the question and answer as a sequence of charac-
ters just like (Vaswani et al., 2017) and treat the question
as a sequence of operators. The overall training loss is the
weighted sum of the answer decoding loss and the program
decoding loss:

L(θenc, θdeca , θdecp) =

− α1logP (ya|x; θenc, θdeca)− α2logP (yp|x; θenc, θdecp)

4. Experiments
We evaluate our framework on the mathematics dataset (Sax-
ton et al., 2019). The reason we did not evaluate on other
mathematical datasets (Kushman et al., 2014; Huang et al.,
2016; Upadhyay & Chang, 2016; Wang et al., 2017; Ling
et al., 2017; Amini et al., 2019) is because these datasets
are either limited to narrow specific fields or demanded for
manual annotated programs.

4.1. Settings

During the search, the maximum number of sampled pro-
grams for each problem is Nw = 100k on the first iteration
and Nn = 1k on the other iterations. The number of itera-
tions I is set to 5.

We extract a character-level vocabulary of 72 symbols and
an operator-level vocabulary of 380 symbols, both including
START, END, and PADDING symbols.

Our transformer-like model parameters θenc, θdeca , θdecp are
set to an embedding size of 512, with 8 attentional heads,
and intermediate feed-forward dimension of 2048. The

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Enhancing Neural Mathematical Reasoning by Abductive Combination with Symbolic Library

Table 1. Model accuracy averaged over all modules. A sample is correct if all characters of the target sequence have been predicted
correctly. The column “>95%” counts how many of the 56 modules achieve over 95% accuracy.

weights steps interpolation extrapolation
acc >95% acc >95%

Transformer (Saxton et al.) 30M 500k 76.00% 13 50.00% 1
TP-Transformer (Schlag et al.) 49.2M 700k 80.67% 18 52.48% 3
Transformer (ours) 44.2M 700k 76.41% 13 50.48% 2
TP-Transformer (ours) 49.2M 700k 79.82% 18 51.99% 3
ABL-Sym+Transformer (ours) 54.9M 700k 87.85% 29 73.41% 7
ABL-Sym+TP-Transformer (ours) 58.8M 700k 88.52% 33 77.26% 8

answer decoder θdeca is with layers of 6 while the program
decoder θdecp is with layers of 2. We train our model via the
Adam optimizer (Kingma & Ba, 2014) with a learning rate
of 8 × 10−5, β1 = 0.9, β2 = 0.995, ε = 10−9. We use a
batch size of 1024, with absolute gradient value clipping
of 0.1. We trained our model on one server with 8 V100
Nvidia GPUs for 12 days. During the search process, the
parameters configuration of our program-generated model
is the same as the above model.

At the inference, answers and programs are generated by
sequential decoding. If the predicted program is none or
fails to run successfully, the neural model answer is used as
the final result.

4.2. Experimental Results

Table 1 presents the overall performance on the dataset.
We can see that our model significantly outperforms the
previous state-of-the-art by up to 7.8% absolute improve-
ment on the interpolation test dataset and 24.8% absolute
improvement on the extrapolation test dataset. Our program-
augmented model dramatically improves the performance
of the model, especially for generalizing the model to areas
not previously seen. For a more detailed comparison, Fig. 1
shows the test performance on extrapolation modules.

Table 2 shows the performance of the 5 iterations of ABL-
Sym together with the random search performance. ABL-
Sym shows clearly better than random search. In the first
iteration, it used an average of 20% fewer search times than
the random search strategy but found 76% more programs,
which mainly due to the warm-up strategy and curriculum
search strategy. These strategies allow us to search more
programs faster within the maximum search limit. After the
first iteration, the model we learned as a better program gen-
erator generated better candidate programs, so we searched
an additional 8% of the programs with negligible search
times. Compared to the second iteration, the number of
programs searched in the next few iterations increased by
only a litter bit. This is because most programs that can be
searched are also almost searched. Still, 57.7% programs
were not found.

Table 2. The cost and the hit ratio of programs during iterating
Method per-question searches hit ratio

ABL-Sym (1 itr) 64.14k 33.2%
ABL-Sym (2 itrs) 64.86k 40.1%
ABL-Sym (3 itrs) 65.49k 41.3%
ABL-Sym (4 itrs) 66.11k 42.0%
ABL-Sym (5 itrs) 66.73k 42.3%
Random search 82.09k 18.9%

0.0 0.2 0.4 0.6 0.8 1.0
P(correct)

probability__swr_p_level_set_more_samples
probability__swr_p_sequence_more_samples

comparison__kth_biggest_more
numbers__place_value_big
measurement__conversion

algebra__polynomial_roots_big
comparison__closest_more

comparison__sort_more
arithmetic__mul_div_multiple_longer

arithmetic__mixed_longer
arithmetic__div_big

arithmetic__add_sub_multiple_longer
numbers__round_number_big

arithmetic__add_or_sub_big
arithmetic__mul_big

Transformer TP-Transformer ABL-Sym+Transformer ABL-Sym+TP-Transformer

Figure 1. The extrapolation test performances of our implementa-
tions of Transformer, TP-Transformer(700K steps) and our ABL-
Sym framework based on Transformer and TP-Transformer on the
different modules.

ABL-Sym can find many programs of compositional or
complex problems (e.g., Calculate the common
denominator of 25/13728 and 121/1248.
the program found is pos7 argc1 denom pos5
argc1 denom argc2 lcm), but random search
strategy was failed.

5. Conclusion
In this work, we demonstrate that integrating discrete sys-
tems into neural systems is a feasible way to enhance the
neural systems, particularly in the extrapolation ability. No-
tice that even human beings learn complex knowledge, e.g.
mathematics, progressively from well organized textbooks.
Well designed discrete systems may serve the role of text-
books for building a complex intelligent systems.

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Enhancing Neural Mathematical Reasoning by Abductive Combination with Symbolic Library

References
Amini, A., Gabriel, S., Lin, P., Koncel-Kedziorski, R., Choi,

Y., and Hajishirzi, H. Mathqa: Towards interpretable math
word problem solving with operation-based formalisms.
arXiv preprint arXiv:1905.13319, 2019.

Arora, S., Liang, Y., and Ma, T. A simple but tough-to-beat
baseline for sentence embeddings. 2016.

Dai, W.-Z., Xu, Q., Yu, Y., and Zhou, Z.-H. Bridging
Machine Learning and Logical Reasoning by Abductive
Learning. In Wallach, H., Larochelle, H., Beygelzimer,
A., d\textquotesingle Alché-Buc, F., Fox, E., and Garnett,
R. (eds.), Advances in Neural Information Processing Sys-
tems 32, pp. 2811–2822. Curran Associates, Inc., 2019.

Huang, D., Shi, S., Lin, C.-Y., Yin, J., and Ma, W.-Y. How
well do computers solve math word problems? large-scale
dataset construction and evaluation. In Proceedings of
the 54th Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), pp. 887–896,
2016.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Kushman, N., Artzi, Y., Zettlemoyer, L., and Barzilay, R.
Learning to automatically solve algebra word problems.
In Proceedings of the 52nd Annual Meeting of the Asso-
ciation for Computational Linguistics (Volume 1: Long
Papers), pp. 271–281, 2014.

Ling, W., Yogatama, D., Dyer, C., and Blunsom, P. Pro-
gram induction by rationale generation: Learning to solve
and explain algebraic word problems. arXiv preprint
arXiv:1705.04146, 2017.

Meurer, A., Smith, C. P., Paprocki, M., Čertı́k, O., Kirpichev,
S. B., Rocklin, M., Kumar, A., Ivanov, S., Moore, J. K.,
Singh, S., et al. Sympy: symbolic computing in python.
PeerJ Computer Science, 3:e103, 2017.

Saxton, D., Grefenstette, E., Hill, F., and Kohli, P. Analysing
mathematical reasoning abilities of neural models. arXiv
preprint arXiv:1904.01557, 2019.

Schlag, I., Smolensky, P., Fernandez, R., Jojic, N., Schmid-
huber, J., and Gao, J. Enhancing the transformer with
explicit relational encoding for math problem solving.
arXiv preprint arXiv:1910.06611, 2019.

Upadhyay, S. and Chang, M.-W. Annotating derivations:
A new evaluation strategy and dataset for algebra word
problems. arXiv preprint arXiv:1609.07197, 2016.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. Atten-
tion is all you need. In Advances in neural information
processing systems, pp. 5998–6008, 2017.

Wang, Y., Liu, X., and Shi, S. Deep neural solver for math
word problems. In Proceedings of the 2017 Conference
on Empirical Methods in Natural Language Processing,
pp. 845–854, 2017.

