
SpatialSim: Recognizing Spatial Configurations
of Objects with Graph Neural Networks

Laetitia Teodorescu 1 Katja Hofmann 2 Pierre-Yves Oudeyer 3

Abstract
Recognizing precise geometrical configurations
of groups of objects is a key capability of human
spatial cognition, yet little studied in the deep
learning literature so far. In particular, a funda-
mental problem is how a machine can learn and
compare classes of geometric spatial configura-
tions that are invariant to the point of view of
an external observer. In this paper we make two
key contributions. First, we propose SpatialSim
(Spatial Similarity), a novel geometrical reason-
ing benchmark, and argue that progress on this
benchmark would pave the way towards a general
solution to address this challenge in the real world.
This benchmark is composed of two tasks: “Iden-
tification” and “Comparison”, each one instanti-
ated in increasing levels of difficulty. Secondly,
we study how relational inductive biases exhib-
ited by fully-connected message-passing Graph
Neural Networks (MPGNNs) are useful to solve
those tasks, and show their advantages over less
relational baselines such as Deep Sets and unstruc-
tured models such as Multi-Layer Perceptrons. Fi-
nally, we highlight the current limits of GNNs in
these tasks.

1. Introduction
Our world appears to us as immediately organized into
collections of objects, arranged together in natural scenes.
These independent entities are the support for mental manip-
ulation and language, and can be processed separately and
in parallel (Pylyshyn, 2007; Green & Quilty-Dunn, 2017).
These objects are themselves composed of constituent ele-
ments whose precise arrangement in space determine their
properties. In contrast, recent successes in deep learning
methods often rely on representations that do not exhibit
such properties of organization. This means the composi-

*Equal contribution 1Inria, France 2Microsoft Reasearch Cam-
bridge, UK 3Inria, France. Correspondence to: Laetitia Teodorescu
<maria.teodorescu@inria.fr>.

tional structure of the world has to be inferred from data,
intuitively leading to slower, noisier learning. While such
unstructured models have achieved important successes in
a variety of domains, there is a strong emerging movement
that advocates for the use of more structured models (Lake
et al., 2016; Battaglia et al., 2018), in particular for using
models displaying relational inductive biases like Graph
Neural Networks (GNNs). These are models that can ap-
proximate functions of graphs and that include in their ar-
chitecture not only a shared feature space for all the nodes
in the graph but also the ability to perform computation on
the edges in the graph, e.g. based on the relationship ex-
hibited by any two connected nodes. Various models based
on these ideas have achieved substantial progress compared
to unstructured methods in recent years, whether it is by
considering the input as sets of objects in a shared space (Qi
et al., 2016; Zaheer et al., 2017) or by explicitly considering
the relations between objects (Battaglia et al., 2016).

A particularly important set of tasks involving relational
computation are those related to geometrical, or spatial,
reasoning. We can describe scenes by naming their dif-
ferent elements and describe pairwise spatial relationships
between them. But even before using words to describe,
with limited precision, such relationships, we are able to
precisely represent the relative positions occupied in space
by different elements, allowing us to form a representation
of complex scenes that is invariant to our point of view.
Such allocentric spatial representations are a cornerstone of
human intelligence (Ekstrom & Isham, 2017), heavily stud-
ied in child cognitive development (Vasilyeva & Lourenco,
2012), as well as a marker of cognitive aging (Moffat et al.,
2006). For example, beyond the pervasive domain of spatial
navigation (Ekstrom & Isham, 2017), there is considerable
evidence that people process faces as precise configurations
of distinct elements (Maurer et al., 2002), where ratios of
distances among elements influences the perception of natu-
ralness. In the context of an agent embodied in the physical
world, judging the stability of a construction of blocks (Ham-
rick et al., 2018) requires appropriate summarizing of the
geometrical relations between elements. In the context of
an agent trying to reproduce a construction demonstrated
by a teacher, the agent must be able to judge whether its
current construction follows the same precise spatial con-

SpatialSim: Recognizing Spatial Configurations of Objects with Graph Neural Networks

Are the configurations on the right :
 - Similar to the first one (scaled/rotated/shifted) ?
 - Random re-arrangements of its objects ?

1 2 3 4

Figure 1. Visual illustration of SpatialSim. Which of the examples are positive samples, and which are negative? Answers in footnote 2

figuration as the one demonstrated by the teacher. Indeed,
when judging whether two configurations of objects are ac-
tually similar up to change of view of the observer, the fact
that one object is on the right of another object provides no
evidence towards the fact that the two configurations are the
same or not, since this information can also be accounted
by the change in perspective. This kind of spatial reason-
ing not only requires to perform relational computation on
the objects but also to condition this computation on the
global context. We thus see that reasoning on precise con-
figurations of objects is a fundamental problem arising in
classification, physical action, and imitation.

To make progress towards solving the challenges motivated
above we first need to be able to quantify progress. However,
to our knowledge there is currently no controlled dataset
or benchmark to tackle this problem directly. In this work
we introduce SpatialSim (Spatial Similarity), a novel spatial
reasoning benchmark, to provide a well-defined and con-
trolled evaluation of the abilities of models to successfully
recognize and compare spatial configurations of objects.
We divide this into two sub-tasks of increasing complexity:
Identification and Comparison. Furthermore, we test and
analyse the performance of increasingly connected Message-
Passing GNNs in this task. We find that GNNs that operate
on fully-connected underlying graphs of the objects per-
form better compared to a less-connected counterpart we
call Recurrent Deep Ret (RDS), to regular Deep Sets and to
unstructured MLPs, suggesting that relational computation
between objects is instrumental in solving the SpatialSim
tasks.

To summarize the key contributions of the paper, 1) we intro-
duce and motivate SpatialSim, a set of two spatial reasoning
tasks and their associated datasets; 2) we compare and an-
alyze the performance of state of the art GNN models on
these two tasks and demonstrate that relational computation
is an important component of achieving good performance;
and 3) we provide preliminary analysis in the limits of these
models in solving the benchmark.

2Similar collections are Configurations 2 and 4

2. The SpatialSim benchmark
In this work, we consider the problem of learning to recog-
nize whether one spatial configuration of objects is equiva-
lent to another. The notion of equivalence that we consider
is grounded in the motivation outlined above: train models
that can reason on configurations of objects regardless of
their point of view. Because of that, we define equivalence
in SpatialSim as geometrical similarity, e.g. any arbitrary
composition of translations, rotations, and scalings. We
frame SpatialSim as a classification problem, where positive
examples are drawn from the same similarity equivalence
class, and negative examples are drawn from a different one.
Since we want, for this first study, to provide the simplest
possible version of the problem, we place ourselves in the
2d plane.

We define a set of nobj objects as colored shapes in 2d
space, each characterized by a 10-dimensional feature vector.
There are three possible shape categories, corresponding to
squares, circles and triangles; the shape of each object is
encoded as a one-hot vector. The shapes are distributed in
continuous 2d space, and their colors belong to the RGB
color space. The objects additionally have a size and an
orientation. A scene containing several objects is given as a
set of the individual feature vectors describing each object.
Note that the objects are unordered, and any permutation of
the objects is a possible encoding for a particular scene.

We subdivide SpatialSim in two tasks. The first one, Identi-
fication, requires a model to learn to recognize a particular
configuration of objects by judging if the presented sample
is a scaled/rotated/translated version of a reference configu-
ration (not shown to the model) or a random re-arrangement
of the same objects. The second task, Comparison, re-
quires a model which receives two samples as input to
decide whether those two samples are similar (one is a
rotated/scaled/translated version of the other) or not. For
additional details on the two tasks and the generation of
samples, please refer to the annex.

SpatialSim: Recognizing Spatial Configurations of Objects with Graph Neural Networks

Table 1. Test classification accuracies (means and standard deviations are given over datasets and seeds) for the three different models on
the Identification task.

MODEL nobj ∈ [3..8] nobj ∈ [9..20] nobj ∈ [21..30]

MPGNN 0.97± 0.026 0.98 ± 0.024 0.98 ± 0.028
RDS 0.91 ± 0.062 0.85 ± 0.128 0.78 ± 0.19
DEEP SET 0.65 ± 0.079 0.60 ± 0.082 0.58 ± 0.09
MLP BASELINE 0.82 ± 0.09 0.59 ± 0.051 0.56 ± 0.051

3. Models and Architectures
With the benchmark, we establish a first set of reference
results from existing models in the in the literature, serv-
ing to identify their strengths and limits, and as baselines
for further work. We consider Message-Passing GNNs for
their established performance, notably in physical reason-
ing tasks, along with stripped-down versions of the same
models. Additionally, our hypothesis is that models that
implement relational computation between objects will per-
form best in this benchmark, because it requires taking into
account the relative positions between objects and not only
their absolute positions in 2d-space. To test this hypothesis,
we model a configuration of objects as a graph, where the
individual objects are the nodes. We then train three GNN
models with decreasing levels of intra-node communica-
tion: MPGNN (full Message-Passing GNN (Gilmer et al.,
2017)) performs message-passing updates over the complete
graph where all object-object edges are considered; RDS
(Recurrent Deep Set) is a Deep Set model (Zaheer et al.,
2017) where each object updates its features based on its
own features and a global vector aggregating all the other
object features (all-to-one message passing); and a regular
Deep Set model where each node updates its own features
independently.

We additionally compare, for both tasks, our models to
Multi-Layer Perceptron (MLP) baselines, built to have the
same order of number of hidden units as the GNNs. How-
ever, because there is a considerable amount of weight shar-
ing in GNNs compared to MLPs the number of weights is
much higher, and additionally, increases substantially with
the number of objects. More details on all models are given
in the annex.

4. Experimental Results
4.1. Identification

We report the means and standard deviations of the test
accuracies across all independent runs in Table 1. Chance
performs at 0.5. We train and test our models on variable
numbers of objects nobj . We observe the highest accuracy
with the MPGNN model, on all three object ranges consid-
ered. It achieves upwards of 0.97 percent accuracy, effec-
tively solving the task for numbers of objects ranging from

3 to 30. Note that in this range performance of the MPGNN
stays constant when the number of objects increases. In
contrast, the RDS model achieves good performance (0.91)
when the number of objects is low, but its performance de-
creases as the number of objects grows. Deep Sets show
lower performance in all cases, and the MLP achieves 0.85
mean accuracy with nobj ∈ [3..8] but its performance drops
sharply as nobj increases.

4.2. Comparison

We report mean accuracies of the different models and their
standard deviation in Table 2. As before, chance perfor-
mance is 0.5. We immediately see the increased difficulty
of Comparison compared to Identification: the model based
on MPGNN layers performs best, with mean accuracies
of 0.89, 0.81 and 0.71, compared to a performance above
0.97 on Identification. In this case we see the performance
drop for MPGNN when nobj increases. RDS performs well
above chance when the number of objects is small, but its
performance drops rapidly afterwards. Both Deeps Sets
and the MLP fail to reliably perform above chance. We
established in the previous section that complete MPGNNs
perform best in learning to identify particular configura-
tions. This experiment suggests that layers that allow nodes
to have access to information about other nodes are key to
achieve good performance, whether this communication is
centralized, via conditioning by the graph-level feature as in
the RDS, or decentralized, as allowed by the MPGNN layer.
Additionnaly, full node-to-node communication seems to be
crucial for good performance, and we show in the next sub-
section how this affects the functions learned by the models.
However, it does not seem to be enough to completely solve
the task. We provide additional details and experiments in
the supplementary material.

4.3. Model Heat maps

In addition to those quantitative results, we assess the qual-
ity of the learned functions for different models. We do
this by visualizing the magnitude of the difference between
the scores of the positive and negative classes, as output by
the different models, as a function of the position of one
of the objects in the configuration. We show the results in
Figure 2. Beyond the clear qualitative differences between

SpatialSim: Recognizing Spatial Configurations of Objects with Graph Neural Networks

Table 2. Test classification accuracies for the three different models on the Comparison task. All metrics were computed on 10 different
seeds and trained for 5 epochs on each dataset of the curriculum.

LAYER TYPE nobj ∈ [3..8] nobj ∈ [9..20] nobj ∈ [21..30]

MPGNN 0.89 ± 0.030 0.81 ± 0.121 0.71 ± 0.176
RDS 0.8 ± 0.133 0.68 ± 0.154 0.52 ± 0.04
DEEP SET 0.51 ± 0.014 0.50 ± 0.001 0.50 ± 0.005
MLP BASELINE 0.55 ± 0.002 0.51 ± 0.006 0.50 ± 0.004

Figure 2. Magnitude of the difference in predicted score for the positive and negative classes for a comparison between a 5-object
configuration and a perturbed version of this configuration where one object is displaced over the 2d-plane. Value displayed is
score+ − score−.Left row is with RDS layers and right row is with MPGNN. For each row, the displaced object’s position is indicated
with a blue star, the other ones with a blue dot. The sizes, colors, orientations and shapes of the objects are not represented. Bright yellow
means the model assigns the positive class to the configuration where the displaced object would be placed here, black means the negative
class would be assigned. Best viewed in color.

different models, this figure clearly shows the shortcomings
of the models. A perfect model for this task would show
a high-magnitude region in the vicinity of the considered
object, and low values everywhere else. Ideally, the object
would be placed at a global maximum of this score differ-
ence function. Instead, both the RDS and MPGNN models
show extended crests of high magnitudes: this means that
moving the considered object along those crests would not
change the prediction of the models, whereas the configura-
tions are clearly changed. This suggests that the models we
considered are limited in their capacity to distinguish classes
of similar configurations. This lack of a clearly identifiable
global maximum over variations of the position of one ob-
ject suggests a possible reason for ceiling in performance
exhibited by our models: the tested GNNs are unable to
break certain symmetries. For the RDS, since each node
only has access to global information about an aggregate
of the other nodes, it is not surprising to see it exhibit the
radial symmetry around the barycenter of the configuration.
MPGNNs seem to operate in a different way: for each node
the learned function seems to show symmetry around axes
related to the principal directions of the distribution of other
nodes. The models are thus insensitive to a great range
of specific perturbations of the individual objects (eg the
RDS is insensitive to the rotation of one object around the
barycenter of the configuration, since the object stays in the
high-magnitude zone). More discussion on this subject can
be found in the appendix.

5. Conclusion
In this work, we motivated and introduced SpatialSim, a
simplified but challenging spatial reasoning benchmark that
serves as a first step towards more general geometrical
reasoning where a model has to learn to recognize an ar-
rangement of objects irrespective of its point of view. We
demonstrated that the relational inductive biases exhibited
by Message-Passing GNNs is crucial in achieving good per-
formance on the task, compared to a centralized message-
passing scheme or to independent updating of the objects.
MPGNNs achieve near-perfect performance on the config-
uration identification task, but achieve much lower perfor-
mance on the configuration comparison task. Our analy-
sis suggests two shortcomings of current models on this
benchmark: 1) the models struggle to accurately summarize
information when the ratio between the number of objects
and the size of the embedding used for representing the
whole configuration becomes large; and 2) GNNs in spite
of their relational inductive biases struggle to break certain
symmetries; we take this to mean additional theoretical and
experimental research is warranted to find more appropriate
biases for geometrical reasoning.

Links
The code, datasets and dataset generators are available at
the following address: https://sites.google.com/view/gnn-
spatial-reco/.

https://sites.google.com/view/gnn-spatial-reco/
https://sites.google.com/view/gnn-spatial-reco/

SpatialSim: Recognizing Spatial Configurations of Objects with Graph Neural Networks

References
Battaglia, P. W., Pascanu, R., Lai, M., Rezende, D. J.,

and Kavukcuoglu, K. Interaction networks for learn-
ing about objects, relations and physics. CoRR,
abs/1612.00222, 2016. URL http://arxiv.org/
abs/1612.00222.

Battaglia, P. W., Hamrick, J. B., Bapst, V., Sanchez-
Gonzalez, A., Zambaldi, V. F., Malinowski, M., Tacchetti,
A., Raposo, D., Santoro, A., Faulkner, R., Gülçehre,
Ç., Song, H. F., Ballard, A. J., Gilmer, J., Dahl, G. E.,
Vaswani, A., Allen, K. R., Nash, C., Langston, V., Dyer,
C., Heess, N., Wierstra, D., Kohli, P., Botvinick, M.,
Vinyals, O., Li, Y., and Pascanu, R. Relational induc-
tive biases, deep learning, and graph networks. CoRR,
abs/1806.01261, 2018. URL http://arxiv.org/
abs/1806.01261.

Ekstrom, A. D. and Isham, E. A. Human spatial navigation:
Representations across dimensions and scales. Current
opinion in behavioral sciences, 17:84–89, 2017.

Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O.,
and Dahl, G. E. Neural message passing for quan-
tum chemistry. CoRR, abs/1704.01212, 2017. URL
http://arxiv.org/abs/1704.01212.

Green, E. J. and Quilty-Dunn, J. what is an object
file? The British Journal for the Philosophy of Sci-
ence, 12 2017. ISSN 0007-0882. doi: 10.1093/
bjps/axx055. URL https://doi.org/10.1093/
bjps/axx055. axx055.

Hamrick, J. B., Allen, K. R., Bapst, V., Zhu, T., McKee,
K. R., Tenenbaum, J. B., and Battaglia, P. W. Relational
inductive bias for physical construction in humans and
machines. CoRR, abs/1806.01203, 2018. URL http:
//arxiv.org/abs/1806.01203.

Lake, B. M., Ullman, T. D., Tenenbaum, J. B., and
Gershman, S. J. Building machines that learn and
think like people. Behavioral and Brain Sciences,
40, Nov 2016. ISSN 1469-1825. doi: 10.1017/
s0140525x16001837. URL http://dx.doi.org/
10.1017/S0140525X16001837.

Maurer, D., Grand, R. L., and Mondloch, C. J. The many
faces of configural processing. Trends in Cognitive
Sciences, 6(6):255 – 260, 2002. ISSN 1364-6613. doi:
https://doi.org/10.1016/S1364-6613(02)01903-4. URL
http://www.sciencedirect.com/science/
article/pii/S1364661302019034.

Moffat, S. D., Elkins, W., and Resnick, S. M. Age differ-
ences in the neural systems supporting human allocentric
spatial navigation. Neurobiology of aging, 27(7):965–972,
2006.

Pylyshyn, Z. W. Things and places: How the mind connects
with the world. MIT press, 2007.

Qi, C. R., Su, H., Mo, K., and Guibas, L. J. Pointnet: Deep
learning on point sets for 3d classification and segmenta-
tion, 2016.

Vasilyeva, M. and Lourenco, S. F. Development of spatial
cognition. Wiley Interdisciplinary Reviews: Cognitive
Science, 3(3):349–362, 2012.

Zaheer, M., Kottur, S., Ravanbakhsh, S., Poczos, B.,
Salakhutdinov, R., and Smola, A. Deep sets, 2017.

http://arxiv.org/abs/1612.00222
http://arxiv.org/abs/1612.00222
http://arxiv.org/abs/1806.01261
http://arxiv.org/abs/1806.01261
http://arxiv.org/abs/1704.01212
https://doi.org/10.1093/bjps/axx055
https://doi.org/10.1093/bjps/axx055
http://arxiv.org/abs/1806.01203
http://arxiv.org/abs/1806.01203
http://dx.doi.org/10.1017/S0140525X16001837
http://dx.doi.org/10.1017/S0140525X16001837
http://www.sciencedirect.com/science/article/pii/S1364661302019034
http://www.sciencedirect.com/science/article/pii/S1364661302019034

Supplementary Material: Summary

This document provides additional details on the SpatialSim benchmark, the architectures and models
used, and some additional experimental results and analysis. It is organized in the following way:

• Section 1: SpatialSim Benchmark Summary
• Section 2: Additional Details on Dataset Generation
• Section 3: Models and Architectures
• Section 4: Model Heatmaps; Additional Discussion
• Section 5: Easier and Harder Configurations
• Section 6: Generalization over Object Number
• Section 7: Effects of Variations in Number of Training Examples
• Section 8: Adding Distractor Objects

1 SpatialSim Benchmark Summary

This section provides a summary of the SpatialSim benchmark.

The datasets, as well as the code and instructions to reproduce our experiments, are accessible at
the following link: https://sites.google.com/view/gnn-spatial-reco/. We also provide the dataset
generation code to produce extended versions of our datasets.

1.1 Description

We subdivide SpatialSim in two tasks. The first one, Identification, allows us to evaluate the abilities
of different models to accurately summarize all relevant information to correctly respond to the
classification problem. In this task, we sample a random configuration that will be the one the model
in required to learn to identify. One configuration corresponds to one datasets, and we evaluate the
capacities of the models on a set of configurations. The second task, Comparison, allows us, in
addition to the study allowed by the Identification task, to judge whether the computation learned
by a model can be trained to be universal across configurations. For this purpose, the task requires
to predict whether two distinct presented configurations belong to the same class or not. We give
additional details on data generation for those two settings in the following sections, as well as a
summary table and figure.

1.2 First task: Identification

The Identification task is composed of several reference configurations of nobj objects, each corre-
sponding to a distinct dataset. Each sample of one dataset is either in the same similarity equivalence
class as the reference configuration, in which case it is a positive example; or in a different similarity
class as the reference, in which case it is a negative example. The same objects are present in all
samples, not to give the model any additional information unrelated to spatial configurations.

This simple task allows us to isolate how well the model is able to learn as a function of the number
of objects nobj : indeed, the model must make a decision that depends on the relationship between
each objects, and for this purpose has to aggregate incoming information from nobj vectors: when
nobj gets large the information the model is required to summarize increases. This can lead to loss
of performance is the capacity of the models stays constant. For this reason, we structure the task
with an increasing number of objects: we generate 27 datasets, with nobj ∈ [3..30]. We further group
them into 3 collections of low number (nobj ∈ [3..8]), medium number (nobj ∈ [9..20]) and high
number (nobj ∈ [21..30]).

For a given number of objects nobj and based on one reference configuration generated by sampling
nobj random objects uniformly in 2d space, we generate a balanced dataset composed of:

Positive examples: after applying a small perturbation of factor ε, to each of the objects in the
reference, very slightly changing their color, position, size and orientation, we apply a rotation around
the configuration barycenter B with an angle φ ∼ U([0, 2π]), a scaling,of center B and magnitude

1

https://sites.google.com/view/gnn-spatial-reco/

s ∼ U([0.5, 2]), and a translation of vector t. The latter is sampled from the same distribution as the
positions of the different objects;

Negative examples: these examples are generated by applying a small perturbation to the features of
the objects in the reference, slightly changing their colors and sizes, and then re-sampling randomly
the positions of the objects, while keeping the object’s identity (shape, size, color). After randomly
resampling the objects’ positions, we apply a rotation, scaling and translation drawn from the same
distribution as in the positive example to all objects. This is done to ensure no spurious correlations
exist that could help models identify positive from negative examples regardless of actual information
about the configuration. While it is, in theory, possible to sample a negative example that is close to
the positive class, the probability is very low in practice for numbers of objects n ≥ 3.

For each reference configuration, we generate 10,000 samples for the training dataset, and 5,000
samples, from the same distribution, for the validation and test datasets. For each dataset, we train a
model on the train set and test it on the test set. The obtained test accuracies of the models over all
datasets are averaged over a group (low, medium and high number of objects).

1.3 Second task : Comparison

In this section, we describe our second task. While in the previous setup the model had to learn to
identify a precise configuration, and could learn to perform computation that does not generalize
across configurations, we envision Comparison as a more complex and complete setting where the
model has to learn to compare two different configurations that are re-drawn for each sample. This
task, while being more difficult than Identification, is also more general and more realistic : while
sometimes an agent may be confronted with numerous repetitions of the same configuration that it
has to learn to recognize - for instance, humans become, by extensive exposition, quite proficient at
the task of recognizing the special configuration of visual elements that is human faces - but a very
common task an intelligent agent will be confronted to is entering a new room filled with objects it
knows but that are arranged in a novel way, and having to reason on this precise configuration.

Identification Comparison

Figure 1: Schematic of the benchmark: we generate datasets for Identification and Comparison tasks.
Each Identification data sample is transformed into an input scene graph. Each Comparison data
sample is transformed in two input scene graphs.

For this task, because each sample presents a different set of objects, nobj can vary from one sample
to the other, and thus a single dataset can cover a range of number of objects. We generate three
distinct datasets, one with nobj ∈ [3..8], one with nobj ∈ [9..20] and one with nobj ∈ [21..30]. In
preliminary experiments we have observed learning the Comparison task is very hard, leading to a
great dependence on the initialization of networks: some seeds converge to a good accuracy, some
don’t perform above chance. This is due to the presence of rotations in the allowed transformations
in the positive examples; a dataset containing only translations and scalings leads to good learning
across initializations. Note that this problem with rotations persists for a simplified setup containing
only configurations of nobj = 3 objects. To alleviate this and carry the optimization process we

2

introduce a curriculum of five datasets, each one with a different range of allowed rotations in the
generation process, with the last one spanning all possible rotation angles.

We generate the dataset as:

Positive examples: we draw the first configuration by randomly sampling the objects’ shape, size,
color, position and orientation. For obtaining the second configuration, we copy the first one, apply a
small perturbation to the features of each object, and apply a random rotation, scaling, and translation
to all objects, using the same process as described in the Identification task;

Negative examples: we draw the first configuration as above, apply a small perturbation of magnitude
ε and for the second one we randomly re-sample the positions of each object independently, while
keeping the other features constant. We finally apply a random rotation, scaling and translation and
this gives us our second set of objects.

For each range of number of objects and for each dataset of the curriculum we generate 100,000
samples for the training set. We generate a validation and a testing set of 10,000 samples for each
range of nobj . Those datasets contain rotations in the full range.

1.4 Summary

All datasets belonging to both SpatialSim tasks are detailed in Table 1.4. A visual illustration of the
benchmark is given in Figure 1.

As described in the main text, the Comparison task is harder to train on than the Identification task.
This is because of the presence of rotations in the allowed transformation for the same similarity class.
This problem does not show when rotations are not included in the dataset. To help the optimization
process, we generate a curriculum of datasets with a set of increasing ranges for allowed rotation
angles θ, up to the entire [0, 2π] range. We thus generate, for each nobj condition (low, mid, high) a
set of 5 datasets with respective7 allowed rotation angles θ:

• θ ∈ [0, π10]

• θ ∈ [0, π2 + π
10]

• θ ∈ [0, π + π
10]

• θ ∈ [0, 3π2 + π
10]

• θ ∈ [0, 2π]

For each condition the test set is unique and has θ ∈ [0, 2π]: we test on unrestrained rotations. This
curriculum is used with all our models in all our experiments.

Names of the datasets: the datasets presented in Table 1.4 are named in the following way.

• For Identification, the ’IDS’ prefix is followed by nobj and then by the ’ valid’ and ’ test’
suffix respectively for validation and test sets.

• For Comparison, the ’CDS’ prefix is followed by the range of numbers of objects (the
dataset may contain samples with nobj in this range, inclusive). The training datasets
additionaly have an identifier corresponding to their place in the rotation angle curriculum (0
to 4, in the above-defined order). The validation and test have the ’ valid’ and ’ test’ suffix,
respectively.

2 Additional details on Dataset Generation

In this section we give additional information on dataset creation. We consider the world as square
with length and width 20 units. We sample the x and y positions of our objects in this square. The sizes
of our objects describe their radius (an object of size s is contained in a square of side 2s) and range
from 0.5 to 2 units. For orientation, we used the following approximation: we considered orientation
as a one-dimensional variable, expressed in radians, and we sample the objects’ orientation between
0 and 2π. This is an approximation because the periodic nature of angles cannot be represented in
one dimension. The colors of the objects are sampled in the continuous 3d RGB space, and each
component ranges from 0 to 1. As for shapes, there are 3 possible categories (square, circle, triangle)
that are represented by a corresponding one-hot vector.

3

Identification Comparison

Condition low
nobj ∈ [3..8]

IDS 3 IDS 3 test CDS 3 8 0 CDS 3 8 test
IDS 4 IDS 4 test CDS 3 8 1
IDS 5 IDS 5 test CDS 3 8 2
IDS 6 IDS 6 test CDS 3 8 3
IDS 7 IDS 7 test CDS 3 8 4
IDS 8 IDS 8 test

Condition mid
nobj ∈ [9..20]

IDS 9 IDS 9 test CDS 9 20 0 CDS 9 20 test
IDS 10 IDS 10 test CDS 9 20 1
IDS 11 IDS 11 test CDS 9 20 2
IDS 12 IDS 12 test CDS 9 20 3
IDS 13 IDS 13 test CDS 9 20 4
IDS 14 IDS 14 test
IDS 15 IDS 15 test
IDS 16 IDS 16 test
IDS 17 IDS 17 test
IDS 18 IDS 18 test
IDS 19 IDS 19 test
IDS 20 IDS 20 test

Condition
high nobj ∈
[21..30]

IDS 21 IDS 21 test CDS 21 30 0 CDS 21 30 test
IDS 22 IDS 22 test CDS 21 30 1
IDS 23 IDS 23 test CDS 21 30 2
IDS 24 IDS 24 test CDS 21 30 3
IDS 25 IDS 25 test CDS 21 30 4
IDS 26 IDS 26 test
IDS 27 IDS 27 test
IDS 28 IDS 28 test
IDS 29 IDS 29 test
IDS 30 IDS 30 test

Table 1: Summary Table for SpatialSim, listing all datasets. The two main columns correspond to
the two tasks. The three main rows correspond to the three object number condition: low, mid, and
high. For each task/object number condition combination, the different datasets are listed according
to whether they are train or test datasets. Validation datasets are omitted from the table for clarity,
but are drawn from the same distribution as the test sets, and are available at the provided link.
Note that Identification has a dataset for each configuration (one per number of objects) and that
Comparison has five train dataset for each valid/test set corresponding to the curriculum in rotation
angles described above.

3 Models and Architectures

3.1 Models for Identification

In this section we present our graph creation procedure for the Identification task and provide the
equations for the models we use: Message-Passing GNN, Recurrent Deep Set, Deep Set and MLP.
We additionally present a visual illustration of our different layers in Figure 2.

3.1.1 Graph Creation

From a set of objects S we construct a fully-connected, directed graph G that is used as an input to
our GNN. In our work, G = (X,A,E, u) contains the following information :

• X ∈ Rn×dx is a tensor of node features, containing a vector of dimension dx for each of
the objects in the scene;

• A ∈Mn×n is the adjacency matrix of the graph;

• E ∈ Re×de is a tensor of edge features, also referred to as messages in the rest of this
article, labeling each of the e edges with a de-dimensional vector, and that can be seen

4

Global-to-node

layer

Graph Aggregation

layer

X X'

u u'

X'

Message-Passing

layer

Node Aggregation

layer

Graph Aggregation

layer

X X'

E E'

u u'

E'

X'

...

Xi Xj

X'j X'i

u'E'ij
...

...
E'ij

Xi

Overall Connectivity Connectivity of each internal layer

X'i

u'

...

Overall Connectivity Connectivity of each internal layer

No Message

Computation X'i

u

...

Global-to-node

layer
Graph Aggregation

layer

X

u'

X'

X'i

u'

...

Overall Connectivity Connectivity of each internal layer

No Message

Computation
X'i...

Message-Passing GNN

Recurrent Deep Set

Deep Set

Figure 2: An illustration of the three different layers used in this work. Going from MPGNN to RDS
to DS can be seen as an ablation study, where different elements are withdrawn from the layer to
study their impact on final performance. For the MPGNN and RDS layers, the output tensors are
then fed back as inputs of the model, providing recurrent computation; this is not the case for the
Deep Set layer. In this figure, emphasis is put on the connectivity implied by each layer. Nodes
are represented by orange disks, the graph-level embedding, which can be seen as a special kind of
node, is represented with an orange square. From top to bottom, we go from all-to-all connectivity to
bidirectional all-to-one to unidirectional all-to-one.

5

as information propagating from the sender node to the receiver node. We choose the
dimensionality of edges to be twice the dimensionality of nodes dx;

• u is a graph-level feature vector, used in the GNN computation to store information pertain-
ing to the whole graph, and effectively used as an embedding of the graph to predict the
class of the input.

Initialization of the graph : Since our models require inputs for E and u that are not a priori given
in the description of the collection of objects, we use a generic initialization scheme : u is initialized
with the mean of all node features, and each edge is initialized with the concatenation of the features
of the sender node and the receiver node.

3.1.2 Message-Passing GNN

The MPGNN can be seen as a function operating on graph input and producing a graph output:
GNN : G(X,A,E, u)→ G′(X ′, A,E′, u′), where the dimensionnality of the node features, edge
features and global features can be changed by the application of this function, but the graph structure
itself encoded as the adjacency matrix A is left unchanged. This GNN can then be described as the
composition of several functions, each updating a part of the information contained in the graph :

Message computation : We denote by Ei→j the feature vector of the edge departing from node i
and arriving at node j, Xi the feature vector of node i, and [x||y] the concatenation of vectors x and
y, and by MLP a multi-layer perceptron. The message passing step is then defined as :

E′i→j ←MLPE([Xi||Xj ||Ei→j ||u])

At each time step, the message depends on the features of the sender and receiver nodes, the previous
message, and the global vector u.

Node-wise aggregation : Once the message along each edge is computed, the model computes the
new node features from all the incoming edges. We define by N (j) the incoming neighbourhood of
node j, that is, the set of nodes i ∈ [1..n] where there exists an edge going from i to j. The node
computation is then performed as so :

X ′j ←MLPX

([
Xj

∣∣∣∣∣∣ ∑
i∈N (j)

E′i→j

∣∣∣∣∣∣u])

Graph-wise aggregation Finally, we update the graph-level feature, that we use as an embedding
for classification, and that conditions the first and second time step of computation :

u′ ←MLPu

([∑
i

X ′i
∣∣∣∣u])

Prediction : the final step is passing the resulting vector u through a final multi-layer perceptron to
produce logits for our binary classification problem :

out←MLPout(u
′)

We use the same dimensionality for the output vectors as for the input vectors of the message compu-
tation, node aggregation and graph aggregation, and this allows us to stack N GNN computations in
a recurrent fashion.

3.1.3 Recurrent Deep Sets

We introduce a simpler model we term Recurrent Deep Sets (RDS). This model is introduced to
provide a comparison point to the MPGNN and assess how useful relational inductive biases are
in performing well on the benchmark. This method dispenses with the message computation and
node aggregation part, and at each step only transforms the node features and aggregates them into
the graph feature. This architecture is resembles the Deep Set, to the important difference that the
graph-level feature u is then fed back at the following step by being concatenated to the object feature
for the next round of computation. This allows the computation of features for each object to depend
on the state of the whole configuration, as summarized in the graph embedding u. This contrasts with

6

the original Deep Sets, where each object is processed independently. The functional description of
this model is thus :

X ′j ←MLPX([Xj ||u])

u′ ←MLPu

([∑
i

X ′i
∣∣∣∣u])

out←MLPout(u
′)

Note that for this model, there is no need to connect each object to every other object. However, this
back-and-forth between node computation and graph aggregation can be interpreted as computing
messages between each object and a central node, that represents the information of the whole graph.
In this sense, this model can be interpreted as a GNN operating on the star-shaped graph of the union
of the set of objects and the central graph-level node. In particular, this means that the resulting
model performs a number of computations that scales linearly in the number of nodes, instead of
quadratically as is the case for a message-passing GNN on the complete, fully connected graph
of objects. While this is an interesting propriety, in practice for a fixed size of u the number of
objects cannot grow arbitrarily large because the success of our models depend on the ability of u to
accurately summarize information which is dependent on all the objects, which becomes difficult as
the number n of objects becomes large.

3.1.4 Deep Sets

In this section we summarize shortly the computations done by the Deep Set model. The model can
be described as a node-wise transformation composed with a sum operator on all the nodes, followed
by a final transformation. Namely, the Deep Set defines the following transformations:

X ′j ←MLPX(Xj)

u′ ←
[∑

i

X ′i

]
out←MLPout(u

′)

Note that, contrary to the MPGNN and the RDS, the Deep Set has no recurrent structure; running it
several times will always produce the same output.

3.1.5 Hyperparameters

In our experimental setup, for a MPGNN/RDS/Deep Set we let h be the dimension of the hidden
layers for all internal MLPs (MLPE , MLPX , MLPu, and MLPout, when each of these MLPs are
defined, as appropriate). We let d be the number of hidden layers. We then have, to keep a similar
number of parameters between GNN models, h = 16 and d = 1 for MPGNN, h = 16 and d = 2 for
RDS, and h = 16 and d = 4 in Deep Set. We use ReLU non-linearities in each MLP. We use (for
MPGNN and RDS) N = 1 successive passes through the GNN, since increasing N did not seem to
affect the performance in a significative way.

We also define the MLP baseline as having d = 2 layers of h = nobj × 16 hidden units. This was
done to provide the MLP with a roughly comparable number of units to the GNNs (since the latter
models maintain a hidden representation of size 16 for each node). The number of units here refer to
the cumulative dimensions of the hidden vectors, the number of parameters to the number of scalar
weights and biases. In particular, this design was adopted because the number of hidden units

3.2 Models for Comparison

To tackle this task, we construct from one sample of two configurations two different graphs, one
representing each set of objects, in the same way as in Identification. In this section we introduce a
straightforward Dual-Input Model (hereby referred as DIM) that operates on input pairs of graphs.
The internal GNNs used inside the DIM can be any one of MPGNN, RDS or Deep Set, and we will
identify different dual-input models by their internal component type.

7

Figure 3: An illustration of the two dual-input architecture. Two parallel layers (MPGNN, RDS or
Deep Set) process the input graphs in parallel, and the resulting global vectors are concatenated and
passed through a final MLP.

3.2.1 Dual-input architecture

Let us denote by GNN a GNN layer, as defined in the discussion of Comparison architectures. The
DIM is composed of two parallel GNN layers, GNN1 and GNN2. Each input graph is processed by
its corresponding layer, as such:

X ′1, E
′
1, u
′
1 ← GNN1(X1, A1, E2, u1)

X ′2, E
′
2, u
′
2 ← GNN2(X2, A2, E2, u2)

As previously, we repeat this operation N times, and we produce the output as:

out←MLPout([u
′
1||u′2])

3.2.2 Hyperparameters

We use the same hyperparameters in for this task as in the previous one. The MLP baseline is also
defined in the same way, except that the number of hidden units in each layer is doubled to account
for the doubling in number of objects. Since the datasets used in Comparison contain a variable
number of objects across samples, we use the mean nobj for determining the number of hidden units
in the MLP.

4 Model Heatmaps

This section provides additional discussion on the model heatmap visualizations presented in the
eponymous section in the main text. We present more fully the description of what these visualiza-
tions mean and we provide additional commentary on the qualitative differences between models,
conditions (low number of objects, mid number of objects and high number of objects).

4.1 Additional details on heatmap generation

Each one of the models we use in this work projects the input graph G = (X,A,E, u) on a two-
dimensional vector with coordinates (C+, C−) ∈ R2. These values correspond respectively to the
scores (logits) for the positive and the negative classes: if C+ ≥ C− the input is classified as positive,
otherwise it is classified as negative. To produce one heatmap image for an object of index oi of
feature vector Xi, we plot H = C+ − C− as a function of oi’s x-y position, while holding oi’s
non-spatial features as well as all other object features constant. Thus, every pixel whereH is positive
corresponds to an input with an alternative x-y position for oi that the model classifies as positive.
The same thing holds for negative values of H: they correspond to positions of oi that would result
in the input being classified as a negative. The actual prediction of the model for the given input is
given by the color of the current position of oi, marked by a star in our plots.

8

In this section we plot the heatmaps for Comparison models. We do this according to the previous
description, by comparing a configuration with a copy of itself, and by moving an object in the copy
configuration only; in this case oi refers to one of the objects in the copied configuration.

4.2 Discussion

The heatmaps are given in Figure 4 and Figure 5 for different models, training datasets, numbers
of objects and seeds. Looking at these model heatmaps allows us to have a qualitative grasp of the
functions learned by our different models, and in particular how well these functions encode the
similarity classes they are trained to represent. The Deep Set models were not included in the figures
because these models predict the same value of H for each position of oi. This means that, when
holding the objects oj , j 6= i, fixed, the model is (almost) invariant to changes in position of oi.

Before going further, one should note that these plots allow us to visualize the variation of the
models’ learned function only with respect to two variables among many, and the portion of the
variation we visualize becomes smaller as nobj grows, because adding objects is adding variables.
Nevertheless, these variations are important because they allow us to probe the boundaries of what our
models classify as being the same configuration as opposed to what they classify as being different
configurations.

One of the first thing we can note is the qualitative difference between MPGNN and RDS models,
espescially when nobj is low (Figure 4). RDS heatmaps seem to consistently exhibit a ring-like
structure, with the areas corresponding to the positive class form a ring centered around the center of
the configuration and passing through oi. We conclude from this that the model has leaned to use the
distance from the center of the configuration (which has a good chance of being different for each
object of a random configuration) as one of the main features in classifying its input. This is to be
expected when we look at the computations done by the RDS: each node has access to an average
of all the other nodes before performing its own node update. MPGNNs sometimes learn ringlike
structures that seem more modulated as in the case of RDS, sometimes being open rings. Other times,
MPGNNs heatmaps exhibit a kind of cross-like structure, or two symmetrical rings; oi is placed
at one of the high-value spots of this structure (indicating that the model has learned to assign the
positive class to a set of two identical copies of the same configuration). These structure seem to
exhibit symmetry with respect to the principal axis of the configuration, suggesting that MPGNN
learns to compute and use this as a feature when tasked to compare two different configurations
it never has seen before. The different forms of the trained MPGNNs may also hint at a higher
expressivity of the model, its ability to approximate a wider range of functions.

Another interesting thing this visualization allows us to see is the difference in functions learned by
models on two different datasets. Figure 4’s second and third rows compare models on the same
configuration of 8 objects, but the ones in the second row have been trained with nobj ∈ [3..8]
whereas the ones in the third row have been trained with nobj ∈ [9..20]. The function learned exhibit
qualitative differences, even if the presented configuration and the models are he same, as a result
of different training conditions. The heatmaps in the bottom row appear more spread out. We take
it to show that the functions learned while training on higher numbers of objects are less sensitive
to the variation of a single object’s position. This is probably so because of the way the negative
samples are created in our datasets: randomly resample all object positions (and then rotate, scale,
and translate all objects randomly). As nobj gets larger, the compared examples presented have a
very high probability to be widly different from the target configuration, making the model less likely
to learn about the contribution of the perturbation of only one object.

Figure 5 corroborates this view: the functions learned exhibit much less variation to the perturbation
of the position of a single object, particularly in the high (nobj = 25) case. This figure also showcases
a prediction error: the top row of the bottom-right block is a visualization of an RDS model that
assigns the negative class to all alternative positions of the object oi, including its current one. This
should not surprise us: when training with a high number of objects, many RDS models do not train
and perform only slightly above chance.

9

Figure 4: Model heatmaps for Comparison models. The plots are organized as follows: the left
column corresponds to dual-input models with MPGNN internal layers, the right one plots dual-input
models with RDS layers. Each of the larger-scale rows plots, respectively: models trained on low
numbers of objects (nobj ∈ [3..8]) and 5 objects plotted, models trained on low numbers of objects
and plotted with 8 objects, and models trained on mid numbers of objects (nobj ∈ [9..20]) and plotted
with 8 objects, for contrast. Within each of the six blocks, each three-image row corresponds to
the heatmaps generated on one random training run of a model, and each image corresponds to
moving about one particular object oi. For each image, the fixed objects are represented by a blue dot
corresponding to their position, and the perturbed object is identified with a blue star.

5 Easier and Harder Configurations to Identify

In this section we study why particular configurations may be harder or easier to recognize for our
models, in the context of the Identification task. We hypothesise that more regular arrangements of
objects must be easier to tell apart than more random configurations, and that configurations with a
high degree of object diversity (many colors, many shapes) must also be easier to learn to classify,
because the models can more easily identify and match the different objects. To test this, we compare
one randomly generated dataset (regular difficulty) with 1) a configuration where all objects are red
circles of the same size positioned at the same point; 2) a configuration where all the objects are
red circles of the same size arranged in a line; 3) a configuration where all the objects are randomly
positioned red circles of the same size; and 4) the same configuration as 3), but with circles of varying
color. We train our three layers, DS, RDS and MPGNN, to recognize these configurations, and report
the results in Figure 6, along with an illustration of the configurations.

10

Figure 5: Model heatmaps for Comparison models. The left and right columns are respectively
MPGNN and RDS, as in Figure 4. The large-scale rows correspond to models trained on mid
numbers of objects and plotted with a configuration of 15 objects, and models trained with high
(nobj ∈ [21..30]) numbers of objects and plotted with 25 objects.

Figure 6: The top row represents the configurations we trained our models with, as described in
the text. The bottom row is a bar plot of the final test accuracy of (from left to right) the Deep Set,
Recurrent Deep Set and Message-Passing GNN on each of the 5 datasets, in the order specified in the
top row (results were computed on 5 seeds for each dataset).

We interpret the results as follows : the fourth configuration, the one with all red circles, does
seem to be more difficult to learn across all models. This may be due to the intrinsic hardness of
the task on this configuration, or to the fact that randomly resampled positions for the negative
examples of this dataset may give with non-negligible probability configurations that are close to a
translated/rotated version of the reference example, because any object can be identified with any
other. This second option may translate into negative examples that may resemble strongly positive
examples, confusing the model. Interestingly, the problem fades when we identify each object by
giving it a color, suggesting this second explanation is correct, but only for the MPGNN. For MPGNN,
performance is roughly similar on all the other datasets. However, for DS and RDS, there seems

11

to be considerable difference between datasets. The DS layer fails to perform significantly above
chance for both right-hand configurations, suggesting arrangements of similar objects are difficult for
this kind of model. Interestingly, the DS layer performs similarly on the aligned red circles than on
the random diverse configuration, but significantly better than on the configuration with randomly
scattered red circles, suggesting it is able to use the alignment information to reach above-chance
accuracy, but not in a completely reliable way. As a contrast, the RDS layer performs near-perfectly
on this configuration, showing that the additional connectivity of the RDS helps it in discovering
exploitable regularities in the data.

6 Generalization to Other Number of objects

In this section we present some generalization results for the Comparison task. Since the models for
this task are trained on any couple of configurations, they can be transferred to datasets with higher
numbers of objects. In this experiment we train Deep Set, RDS and MNGNN models on one dataset
(nobj ∈ [3..8], nobj ∈ [9..20] or nobj ∈ [21..30]) and test the models on all three datasets. The results
are reported in Table 6.

3-8 9-20 21-30

3-8
0.51 ± 0.016 0.49 ± 0.046 0.50 ± 0.043
0.80 ± 0.133 0.66 ± 0.138 0.51 ± 0.048
0.89 ± 0.03 0.71 ± 0.092 0.56 ± 0.075

9-20
0.51 ± 0.046 0.50 ± 0.001 0.50 ± 0.047
0.75 ± 0.125 0.68 ± 0.154 0.52 ± 0.054
0.68 ± 0.063 0.81 ± 0.121 0.68 ± 0.16

21-30
0.50 ± 0.04 0.51 ± 0.068 0.50 ± 0.05
0.60 ± 0.087 0.68 ± 0.15 0.52 ± 0.04
0.51 ± 0.048 0.77 ± 0.12 0.71 ± 0.18

Table 2: Generalization results between datasets for Deep Set, RDS and MPGNN. The numbers
plotted are averages of testing accuracies. Columns correspond to training datasets, rows to testing
datasets. Each block corresponds to one train-set/test-set combination. In each block, the results are
given from top to bottom for Deep Set, RDS and MPGNN. Diagonal blocks correspond to matching
train set/test set combinations. All reported results are averages and standard deviations over 10
different runs. Rows and columns are annotated with the nobj range.

The results demonstrate the limited abilities of the models to transfer their learned functions to higher
or lower numbers of objects. For instance, MPGNNs achieve 0.89 test accuracy when trained and
tested on 3 to 8 objects, but this performance decreases sharply on the datasets with higher numbers
of objects. This is less the case for RDS, presumably because the simpler functions they learn, while
achieving lower performance when tested on the matching dataset, are more robust to higher numbers
of objects. Another interesting point is that models trained on 9 to 20 numbers of objects appear
to transfer better than other conditions. In particular, both RDS and MPGNN achieve higher mean
test accuracy when transferring from 9-20 objects to 21-30 objects than models which were directly
trained on 21-30 numbers of objects. The 21-30 dataset is harder to train on, so the models trained
directly on this dataset may never learn, which bring the mean accuracy down. This suggests that
functions useful for good performance on 9-20 numbers of objects are also useful for 21-30 numbers
of objects. In contrast, functions useful for good performance on 3-8 numbers of objects do not
transfer well to higher numbers of objects.

These suggest a tradeoff in being able to solve the task well for low numbers of objects versus being
able to solve the task for high numbers of objects. This confirms the qualitative evaluation in Section
4, where we remarked that the functions learned by the models varied greatly with the dataset they
were trained on.

12

7 Training on Less Examples

In this section we vary the number of unique examples presented to the models in the training set.
We keep the same number of optimizer steps as in the main experiments, but we reduce the number
of samples we train on. The results for Identification are presented in Table 3, and the results for
Comparison are reported in Table 4.

In both Tables, in the first two rows we see all models overfitting the dataset, their test accuracy
being at 0.5. They are unable to transfer to the training set and performing at chance levels. Then,
respectively at 1000 samples for Identification and at 10000 samples for Comparison the performance
levels rise very close to their final levels. We wanted to observe whether the additional relational
inductive biases in MPGNNs would allow for faster training than RDS and Deep Set; however we do
not observe this: all models seem to have similar progression levels as the size of the training set
increases. From this we conclude that the advantage of MPGNNs do not stem from their sample-
efficiency, but rather from their ability to represent more complex functions.

MPGNN RDS Deep Set

10 0.52 ± 0.038 0.52 ± 0.035 0.52 ± 0.032
100 0.64 ± 0.051 0.58 ± 0.035 0.54 ± 0.019
1000 0.94 ± 0.041 0.86 ± 0.065 0.61 ± 0.036
10000 0.97 ± 0.026 0.91 ± 0.062 0.65 ± 0.079

Table 3: Mean accuracies for training on reduced numbers of examples on Identification. The last
row represents the full training set.

MPGNN RDS Deep Set

100 0.50 ± 0.005 0.50 ± 0.004 0.50 ± 0.005
1000 0.50 ± 0.004 0.50 ± 0.003 0.50 ± 0.005
10k 0.87 ± 0.016 0.82 ± 0.098 0.52 ± 0.01
100k 0.89 ± 0.03 0.80 ± 0.133 0.51 ± 0.014

Table 4: Mean accuracies for training on reduced numbers of examples on Comparison. The last row
represents the full training set.

8 Adding Distractor Objects

In realistic environments cluttered with objects, only some of the objects could be relevant for the
similarity task at hand; some of the objects may be distractors unrelated to the task. To test how
robust our models are to additional objects in the input that bear no relevance to the task, we generate
additional train and test sets for nobj ∈ [3..8]. We use numbers of distractors nd ∈ [0..3] for both
Identification and Comparison. The results are reported in Table 5.

Table 5: Test accuracies on the distractor datasets.

MODEL IDENTIFICATIOM COMPARISON

MPGNN 0.87 ± 0.043 0.76 ± 0.019
RDS 0.78 ± 0.102 0.59 ± 0.069
DEEP SET 0.67 ± 0.073 0.51 ± 0.01

We see the model performance consistently drop for MPGNN and RDS, with a decrease in test accu-
racy of around 10% on both tasks. The distractors seem to have no effect on Deep Set performance,
suggesting that Deep Sets do not rely on a precise representation of object configuration. Dealing
effectively with distractor objects could be done by adding n attention mechanism to the GNNs, a
topic we leave for further work.

13

	SpatialSim Benchmark Summary
	Description
	First task: Identification
	Second task : Comparison
	Summary

	Additional details on Dataset Generation
	Models and Architectures
	Models for Identification
	Graph Creation
	Message-Passing GNN
	Recurrent Deep Sets
	Deep Sets
	Hyperparameters

	Models for Comparison
	Dual-input architecture
	Hyperparameters

	Model Heatmaps
	Additional details on heatmap generation
	Discussion

	Easier and Harder Configurations to Identify
	Generalization to Other Number of objects
	Training on Less Examples
	Adding Distractor Objects

