Barking up the right tree: an approach to search over molecule synthesis DAGs

Anonymous Authors'

Abstract

When suggesting new molecules with particu-
lar properties to a chemist, it is not only im-
portant what to make but crucially how to make
it. These instructions form a synthesis directed
acyclic graph (DAG), describing how a large vo-
cabulary of simple building blocks can be recur-
sively combined through chemical reactions to
create more complicated molecules of interest. In
contrast, many current deep generative models
for molecules ignore synthesizability. We there-
fore propose a deep generative model that better
represents the real world process, by directly out-
putting molecule synthesis DAGs. We argue that
this provides sensible inductive biases, ensuring
that our model searches over the same chemical
space that a chemist would. We show that our
approach models chemical space well, producing
a wide range of diverse molecules, and allows
for unconstrained optimization of an inherently
constrained problem: maximize certain properties
such that discovered molecules are synthesizable.

1. Introduction

Designing new molecules is a key step for problems such as
medicine development. To address this, there have been
many recent exciting developments in ML towards two
goals: G1. Learning generative models of molecules:
that can be used to sample novel molecules, for downstream
screening and scoring, and; G2. Molecular optimization:
how to search for molecules that maximize certain proper-
ties (e.g., drug-likeness) (Gémez-Bombarelli et al., 2018;
You et al., 2018; Jin et al., 2018; Li et al., 2018; Olivecrona
et al., 2017; Segler et al., 2017b; Kadurin et al., 2017; As-
souel et al., 2018; Dai et al., 2018; Samanta et al., 2019).
However, for most ML approaches there is often no indica-
tion that proposed molecules can be made.

! Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email @domain.com>.

Preliminary work. Under review at BRIDGE BETWEEN PER-
CEPTION AND REASONING: GRAPH NEURAL NETWORKS
& BEYOND (ICML 2020 Workshop). Do not distribute.

‘% Mparacetemol

M

0
(110
o—N' ©

M\ M,

Figure 1. A synthesis DAG for paracetamol (Ellis, 2002).

Recently, approaches to address this have, (a) focused on
single-step reactions (Bradshaw et al., 2019), or (b) per-
formed a random walk on a reaction network, deciding
which points to assess the properties of using Bayesian op-
timization (Korovina et al., 2019). The downside of (a) is
that most molecules cannot be synthesized in a single step
from a fixed set of common reactants (e.g., paracetamol —
see Figure 1). Whereas, the downside of (b) is that the walk
proceeds in an undirected manner through synthesis space.

In this work to address this gap, we present a new archi-
tecture to generate multi-step molecular synthesis routes.
We represent routes as directed acyclic graphs (DAGs) of
graphs (DoGs), and develop encoder and decoder networks
around this structure, These can be integrated into widely
used frameworks such as latent generative models (G1)
(Kingma & Welling, 2013; Tolstikhin et al., 2017), which
allow sampling and interpolation within molecular space,
or reinforcement learning-based optimization procedures
(G2) to optimize molecules for particular tasks. Compared
with models not constrained to also generate synthetically
tractable molecules, competitive results are obtained.

2. Modeling Synthesis DAGs
In this section we describe how synthesis routes can be de-
fined as DAGs, and our generative model over this structure.
We then show how our model can be used as part of a larger
framework, such as an autoencoder.

2.1. Synthesis Pathways as DAGs

Consider Figure 1. At a high level, to synthesize a new
molecule Mrp, such as paracetamol, one needs to per-

Barking up the right tree: an approach to search over molecule synthesis DAGs

3 K \\o‘ > D
N ¥ R

WA
SR

NG
0

T

0

N D & N & R

PIEddy (B

Adding a product node is followed

by adding edges into it until the
"create intermediate product” or

"create final product” action is selected.

Figure 2. An example of how we can serialize the construction of the DAG shown in Figure 1, with the corresponding DAG for three
different time-points shown in the gray circles. The serialized construction sequence consists of a sequence of actions, these can be

classified into belonging to three different types:

, and (A3) connectivity choice.

By convention we start at the furthest building block from the final product node.

form a series of reactions. Each reaction takes a set of
molecules (reactants) and physically combines to produce a
new molecule (a product), where we make the assumption
here that all reactions are deterministic and produce a single
primary product. The set of reactants are selected from a
pool of available molecules, which includes a large set of
easy-to-obtain starting molecules (building blocks), R, and
existing intermediate products already created.

In general, this multi-step reaction pathway forms a synthe-
sis DAG, which we shall denote M. Specifically, note that it
is directed from reactants to products, each unique molecule
maps one-to-one with each node, and it is not cyclic, as we
need not consider reactions that produce existing molecules.

2.2. A probabilistic generative model of synthesis DAGs

We need a way to serialize the construction of a DAG such
that a ML model can iteratively construct it. Figure 2 shows
such an approach. Specifically, we divide actions into three
types: Al. Node-addition (shown in yellow): What type
of node (building block or product) should be added to the
graph?; A2. Building block molecular identity (in blue):
Once a building block node is added, what molecule should
this node represent?; A3. Connectivity choice (in green):
What reactant nodes should be connected to a product node?
(i.e., what molecules should be reacted together).

As shown in Figure 2 the construction of a DAG, M, then
happens through a sequence of these actions, which we shall
denote as M = [V1, V2 V3 ... VE]. Building block ('B')
or product nodes ('P") are selected through action type A1,
before the identity of the molecule they contain is specified.
For building blocks this consists of choosing the relevant
molecule in R, through an action of type A2. Product nodes’
molecular identity is instead defined by the reactants that
produce them, therefore action type A3 is used repeatedly
to either select an incoming reactant edge to an existing
molecule in the DAG, or to decide to form an intermediate
(#1) or final (4 x) product. In forming a final product all
the previous nodes without successors are connected up to
the final product node, and the sequence is complete.

Defining a probabilistic distribution over actions We
propose an auto-regressive factorization over the actions:
L

po(M|2) = [[po(VilV<r, 2) ey
1=1

Each py(V)|V<y, z) is parameterized by a neural network
(NN), with weights 6. The structure of this network is
shown in Figure 3. It consists of a shared RNN that, given
an embedding of the previous action chosen, computes a
‘context’ vector, which gets fed into a feed forward action-
network (specific to the action-type) for predicting each
action. The RNN’s hidden state is initialized by a latent
variable z € R, the setting of which is discussed in §2.3.1

Action embeddings We represent actions in our NNs us-
ing continuous embeddings. For abstract actions, such as
producing a new node ('B', 'P"), these are learnt, and for
molecular actions provided by Gated Graph Neural Net-
works (Li et al., 2016) (GGNN5s) run on the molecular graph.

Reaction prediction At test time, intermediate or final
products may be created using reactions not contained in
our training set. Here we use the Molecular Transformer
(Schwaller et al., 2019) as a reaction predictor, Product(-),
that given a set of reactants predicts the major product (or
randomly selects a reactant if the reaction does not work).

2.3. Variants of our model

Having introduced our general model for generating syn-
thesis DAGs of (molecular) graphs (DoGs), we detail two
variants: an autoencoder (DoG-AE) for learning continuous
embeddings (G1), and a more basic generator (DoG-Gen)
for performing molecular optimization via finetuning (G2).

DoG-AE: Learning a latent space over synthesis DAGs
For G1, we are interested in learning latent continuous em-
beddings of our space, which allows the exploration of latent
space through sampling and interpolation. To do this we
will use our generative model as a decoder, in an autoen-
coder structure, DoG-AE. We specify a Gaussian prior over
our latent variable z, where each z ~ p(z) can be thought

"Further model details can also be found in the Appendix.

Barking up the right tree: an approach to search over molecule synthesis DAGs

selected,
®

:z-/cuudO

O

N X

selected, selected selected,
Qeoo e 002
) O O

Figure 3. A depiction of how we use neural networks to parameterize the probability of picking actions at stages 1-6 of Figure 2 (note
that as stage 1 always suggests a building block node it is automatically completed). A shared RNN for the different action networks
receives an embedding of the previous action chosen and creates a context vector for the action network. When using our approach as
part of an autoencoder network then the initial hidden layer is parameterized by the latent space sample, z. Each type of action network
chooses a subsequent action to take (impossible actions are masked out, such as selecting an already existing building block or creating an
intermediate product before selecting at least one reactant). The process continues until the create final product node is selected.

of as describing different types of synthesis pathways. We
can learn the parameters of our model by optimizing for the
Wasserstein autoencoder (WAE) objective with a negative
log likelihood cost function (Tolstikhin et al., 2017),

min Eprtepr) Egy (zm) [— log pe(M | Z)] + AD(gy(2), p(2)),

where following Tolstikhin et al. (2017) D(-, -) is a maxi-
mum mean discrepancy divergence measure and A = 10.

This leaves us to define our encoder, q,(z | M) a stochastic
mapping from synthesis DAGs to latent space. Our encoder
consists of a two-step hierarchical message passing proce-
dure. Initial DAG node embeddings are calculated using a
primary GGNN on the molecular graph associated with each
node. These DAG node embeddings are then updated using
a secondary GGNN, which passes messages forward on the
DAG. Lastly, the updated final product node embeddings
parameterize a distribution over latent space.

2.4. DoG-Gen: Molecular optimization via fine-tuning

For molecular optimization, we consider a model trained
without a latent space; we use our probabilistic generator of
synthesis DAGs and fix z=0, we call this model DoG-Gen.
We then adopt the hill-climbing algorithm from Brown et al.
(2019). For this, our model is pre-trained via maximum
likelihood to match the training distribution p(AM). For opti-
mization, we can then fine-tune the weights 6 of the decoder:
this is done by sampling a large number of candidate DAGs
from the model, ranking them according to a target, and
finetuning our model’s weights on the top K samples.

3. Experiments

We now evaluate our approach to generating synthesis DAGs
on the two goals set out earlier: (G1) can we model the space
of synthesis DAGs well, and (G2) can we find optimized
molecules for particular properties. To train our models, we

create a dataset of synthesis DAGs based on the USPTO
reaction dataset (Lowe, 2012) (see appendix for details).

3.1. Generative Modeling of Synthesis DAGs

We begin by assessing properties of the final molecules
produced by our models (Table 1). Ignoring the synthe-
sis allows us to compare against previous generative mod-
els for molecules including SMILES-LSTM (Segler et al.,
2017b), the Character VAE (CVAE) (Gémez-Bombarelli
et al., 2018), the Grammar VAE (GVAE) (Kusner et al.,
2017), the GraphVAE (Simonovsky & Komodakis, 2018),
the Junction Tree Autoencoder (JT-VAE) (Jin et al., 2018),
the Constrained Graph Autoencoder (CGVAE) (Liu et al.,
2018), and Molecule Chef (Bradshaw et al., 2019).> These
models cover a wide range of approaches for modeling
molecular graphs, however aside from Molecule Chef,
which is itself limited to one step reactions, these other
baselines do not provide synthetic routes with their output.

As metrics we report those used previously (Liu et al., 2018).
Specifically, validity measures how many of the generated
molecules can be parsed by the chemoinformatics software
RDKit (RDKit, online). Conditioned on validity, we con-
sider the proportions of molecules that are unique and novel
(different to those in the training set). These metrics are
useful sanity checks, albeit with limitations (Brown et al.,
2019), showing that sensible molecules are produced.

3.2. Optimizing Synthesizable Molecules

We next look at using our model for the optimization of
molecules with desirable properties. To evaluate our model,
we compare its performance on a series of 10 optimization

>We reimplemented the CVAE and GVAE models in PyTorch
and found that our implementation is significantly better than
Kusner et al. (2017)’s published results. We believe this is down
to being able to take advantage of some of the latest techniques
for training these models (for example S-annealing(Higgins et al.,
2017; Alemi et al., 2018)) as well as hyperparameter tuning.

Barking up the right tree: an approach to search over molecule synthesis DAGs

Synthesize score (higher score bars occlude lower)

. =00 WM =01 W 202 203 20.4

205 20.6 =0.7 =0.8 W =09

Aripiprazole

Deco Hop

Osimertinib Ranolazine

Amlodipine

Graph GA

Graph GA
SMILES LSTM
DoG-Gen
Graph GA
SMILES LSTM
DoG-Gen
DoG-Gen
SMILES LSTM
DoG-Gen
Graph GA
SMILES LSTM

SMILES GA
SMILES GA
SMILES GA
SMILES GA
SMILES GA

DoG-Gen

Perindopril

Scaffold Hop Valsartan

Best in train

Sitagliptin

Zaleplon

DoG-Gen
Graph GA
SMILES LSTM
DoG-Gen

Graph GA
SMILES LSTM
SMILES GA
DoG-Gen
Graph GA
SMILES LSTM
SMILES GA
DoG-Gen
SMILES GA
SMILES GA

Figure 4. The score of the best molecule found by the different approaches over a series of ten Guacamol tasks (Brown et al., 2019, §3.2).
Benchmark scores (y-axis) range between 0 and 1, with 1 being the best. We also differentiate between the synthesizability of the different
best molecules found by using colors to indicate the synthesizability score (higher better) of the best molecule found. Note that bars
representing a molecule within a higher synthesizability score bucket (eg blue) will occlude lower synthesizability score bars (eg red).
The dotted gray lines represent the scores of the best molecule in our training set.

Table 1. Table showing the percentage of valid molecules gen-
erated and then conditioned on this the uniqueness and novelty
(within the sample). For each model we generate the molecules by
decoding from 20k prior samples from the latent space.

Model Name Validity (1) Uniqueness () Novelty (1)
DoG-AE 100.0 98.3 92.9
DoG-Gen 100.0 97.7 88.4
Training Data 100.0 100.0 0.0
SMILES LSTM 94.8 95.5 74.9
CVAE 96.2 97.6 76.9
GVAE 74.4 97.8 82.7
GraphVAE 42.2 57.7 96.1
JT-VAE 100.0 99.2 94.9
CGVAE 100.0 97.8 97.9
Molecule Chef 98.9 96.7 90.0

tasks from Brown et al. (2019, §3.2) against the three best
reported models Brown et al. (2019, Table 2) found: (1)
SMILES LSTM (Segler et al., 2017b), which does optimiza-
tion via fine-tuning; (2) GraphGA (Jensen, 2019), a graph
genetic algorithm (GA); and (3) SMILES GA (Yoshikawa
et al., 2018), a SMILES based GA. We train all methods
on the same data, which derived from the USPTO dataset,
should give a strong bias for synthesizability.

We note that we should not expect our model to find the
best molecule if judged solely on molecular property score;
our model has to build up molecules from reactions, which
although better reflecting reality, means that it is more con-
strained. However, the final property score is not everything,
molecules also need to: (i) be sufficiently stable, and (ii) be
able to actually be created in practice (synthesizable). To
quantify (i) we use the quality filters proposed in Brown
et al. (2019, §3.3). To quantify (ii) we use Computer-Aided
Synthesis Planning (Boda et al., 2007; Segler et al., 2017a;
2018; Gao & Coley, 2020). Specifically, we run a retrosyn-

thesis tool (Segler et al., 2018) on each molecule to see if
a synthetic route can be found, and how many steps are
involved. We also measure an aggregated synthesizability
score over each step (see Appendix). All results are calcu-
lated on the top 100 molecules found by each method for
each task.

The results are shown in Figure 4 and Table 2 (see also ap-
pendix). Figure 4 shows when disregarding synthesis, that
generally Graph GA and SMILES LSTM produce molecules
with the best property scores. However, corroborating with
(Gao & Coley, 2020, FigureS6), we find GA methods regu-
larly produce unsynthesizable molecules. Our model, con-
sistently finds high-scoring molecules while maintaining
high synthesis scores. Furthermore, a high fraction of our
model’s molecules pass the quality checks (Table 2).

Table 2. Using the top 100 molecules suggested by each method
aggregated over all tasks: the fraction for which a synthetic route
is found, the mean synthesizability score , and the fraction that
pass the quality filters from Brown et al. (2019, §3.3).

Frac. Synthe- Avg. Synth. Quality
sizable Score
DoG-Gen 0.9 0.76 0.75
Graph GA 0.42 0.33 0.36
SMILES LSTM 0.48 0.39 0.49
SMILES GA 0.29 0.25 0.39

4. Conclusions

In this work, we introduced a novel neural architecture com-
ponent for molecule design, which by directly generating
synthesis DAGs, captures how molecules are made in the
lab. We showcase how the component can be used in dif-
ferent paradigms, such as WAEs and RL, demonstrating
competitive performance on various benchmarks.

Barking up the right tree: an approach to search over molecule synthesis DAGs

References

Alemi, A., Poole, B., Fischer, 1., Dillon, J., Saurous, R. A.,
and Murphy, K. Fixing a broken ELBO. In International
Conference on Machine Learning, pp. 159-168, 2018.

Assouel, R., Ahmed, M., Segler, M. H., Saffari, A., and Ben-
gio, Y. Defactor: Differentiable edge factorization-based
probabilistic graph generation. 2018. arXiv:1811.09766.

Boda, K., Seidel, T., and Gasteiger, J. Structure and reaction
based evaluation of synthetic accessibility. Journal of
computer-aided molecular design, 21(6):311-325, 2007.

Bradshaw, J., Paige, B., Kusner, M. J., Segler, M. H., and
Hernandez-Lobato, J. M. A model to search for synthe-
sizable molecules. In NeurIPS, 2019.

Brown, N., Fiscato, M., Segler, M. H., and Vaucher, A. C.
Guacamol: benchmarking models for de novo molecular

design. Journal of chemical information and modeling,
59(3):1096-1108, 2019.

Cho, K., van Merriénboer, B., Gulcehre, C., Bahdanau,
D., Bougares, F., Schwenk, H., and Bengio, Y. Learn-
ing phrase representations using RNN encoder—decoder
for statistical machine translation. In Proceedings of
the 2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pp. 1724—1734, Doha,
Qatar, October 2014. Association for Computational Lin-
guistics. doi: 10.3115/v1/D14-1179. URL https:
//www.aclweb.org/anthology/D14-1179.

Dai, H., Tian, Y., Dai, B., Skiena, S., and Song, L. Syntax-
directed variational autoencoder for structured data. In

International Conference on Learning Representations,
2018.

Ellis, F. Paracetamol: a curriculum resource. Royal Society
of Chemistry, 2002.

Gao, W. and Coley, C. W. The synthesizability of molecules
proposed by generative models. Journal of Chemical
Information and Modeling, 2020.

Gilmer, J., Schoenholz, S. S., Riley, P. E., Vinyals, O., and
Dahl, G. E. Neural message passing for quantum chem-

istry. In International Conference on Machine Learning,
pp. 1263-1272, 2017.

Gomez-Bombarelli, R., Wei, J. N., Duvenaud, D.,
Hernandez-Lobato, J. M., Sanchez-Lengeling, B., She-
berla, D., Aguilera-Iparraguirre, J., Hirzel, T. D., Adams,
R. P, and Aspuru-Guzik, A. Automatic chemical de-
sign using a Data-Driven continuous representation of
molecules. ACS Cent Sci, 4(2):268-276, February 2018.

Grzybowski, B. A., Bishop, K. J. M., Kowalczyk, B., and
Wilmer, C. E. The ’wired’ universe of organic chemistry.
Nat. Chem., 1(1):31-36, April 2009.

Higgins, 1., Matthey, L., Pal, A., Burgess, C., Glorot, X.,
Botvinick, M., Mohamed, S., and Lerchner, A. beta-
vae: Learning basic visual concepts with a constrained
variational framework. Iclr, 2(5):6, 2017.

Jacob, P.-M. and Lapkin, A. Statistics of the network of
organic chemistry. React. Chem. Eng., 3(1):102—118,
February 2018.

Jensen, J. H. A graph-based genetic algorithm and gener-
ative model/monte carlo tree search for the exploration
of chemical space. Chemical science, 10(12):3567-3572,
2019.

Jin, W., Coley, C. W., Barzilay, R., and Jaakkola, T. Predict-
ing organic reaction outcomes with Weisfeiler-Lehman
network. In Advances in Neural Information Processing
Systems, 2017.

Jin, W., Barzilay, R., and Jaakkola, T. Junction tree vari-
ational autoencoder for molecular graph generation. In
International Conference on Machine Learning, 2018.

Kadurin, A., Aliper, A., Kazennov, A., Mamoshina, P., Van-
haelen, Q., Khrabrov, K., and Zhavoronkov, A. The cor-
nucopia of meaningful leads: Applying deep adversarial
autoencoders for new molecule development in oncology.
Oncotarget, 8(7):10883, 2017.

Kingma, D. and Ba, J. Adam: A method for stochastic
optimization. In International Conference on Learning
Representations, 2015.

Kingma, D. P. and Welling, M. Auto-encoding variational
bayes. arXiv preprint arXiv:1312.6114, 2013.

Korovina, K., Xu, S., Kandasamy, K., Neiswanger, W., Poc-
zos, B., Schneider, J., and Xing, E. P. Chembo: Bayesian
optimization of small organic molecules with synthesiz-
able recommendations. arXiv preprint arXiv:1908.01425,
2019.

Kusner, M. J., Paige, B., and Herndndez-Lobato, J. M.
Grammar variational autoencoder. In International Con-
ference on Machine Learning, 2017.

Li, Y., Tarlow, D., Brockschmidt, M., and Zemel, R. Gated
graph sequence neural networks. International Confer-
ence on Learning Representations, 2016.

Li, Y., Vinyals, O., Dyer, C., Pascanu, R., and Battaglia,
P. Learning deep generative models of graphs. arXiv
preprint arXiv:1803.03324, March 2018.

https://www.aclweb.org/anthology/D14-1179
https://www.aclweb.org/anthology/D14-1179

Barking up the right tree: an approach to search over molecule synthesis DAGs

Liu, Q., Allamanis, M., Brockschmidt, M., and Gaunt, A. L.
Constrained graph variational autoencoders for molecule
design. In Advances in neural information processing
systems, 2018.

Lowe, D. M. Extraction of chemical structures and reactions
from the literature. PhD thesis, University of Cambridge,
2012.

Olivecrona, M., Blaschke, T., Engkvist, O., and Chen, H.
Molecular de-novo design through deep reinforcement
learning. Journal of cheminformatics, 9(1):48, 2017.

RDKit, online. RDKit: Open-source cheminformatics.
http://www.rdkit.orqg. [Online; accessed O1-
February-2018].

Samanta, B., Abir, D., Jana, G., Chattaraj, P. K., Gan-
guly, N., and Rodriguez, M. G. Nevae: A deep gen-
erative model for molecular graphs. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 33,
pp- 1110-1117,2019.

Schneider, N., Lowe, D. M., Sayle, R. A., and Landrum,
G. A. Development of a novel fingerprint for chemical
reactions and its application to large-scale reaction classi-
fication and similarity. J. Chem. Inf. Mod., 55(1):39-53,
2015.

Schwaller, P., Gaudin, T., Lanyi, D., Bekas, C., and Laino, T.
“found in translation”: predicting outcomes of complex
organic chemistry reactions using neural sequence-to-
sequence models. Chemical science, 9(28):6091-6098,
2018.

Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter,
C. A., Bekas, C., and Lee, A. A. Molecular transformer:
A model for uncertainty-calibrated chemical reaction pre-
diction. ACS Central Science, 5(9):1572—-1583, 2019. doi:
10.1021/acscentsci.9b00576.

Segler, M., Preull, M., and Waller, M. P. Towards al-
phachem: Chemical synthesis planning with tree search
and deep neural network policies. arXiv preprint
arXiv:1702.00020, 2017a.

Segler, M. H., Kogej, T., Tyrchan, C., and Waller, M. P.
Generating focused molecule libraries for drug discov-
ery with recurrent neural networks. arXiv preprint
arXiv:1701.01329, 2017b.

Segler, M. H., Preuss, M., and Waller, M. P. Planning chem-
ical syntheses with deep neural networks and symbolic
ai. Nature, 555(7698):604-610, 2018.

Simonovsky, M. and Komodakis, N. GraphVAE: Towards
generation of small graphs using variational autoencoders.
In Kirkova, V., Manolopoulos, Y., Hammer, B., Iliadis,

L., and Maglogiannis, L. (eds.), Artificial Neural Networks
and Machine Learning — ICANN 2018, pp. 412-422,
Cham, 2018. Springer International Publishing. ISBN
978-3-030-01418-6.

Tolstikhin, 1., Bousquet, O., Gelly, S., and Schoelkopf,
B. Wasserstein auto-encoders. arXiv preprint
arXiv:1711.01558, 2017.

Yoshikawa, N., Terayama, K., Sumita, M., Homma, T.,
Oono, K., and Tsuda, K. Population-based de novo
molecule generation, using grammatical evolution. Chem-
istry Letters, 47(11):1431-1434, 2018.

You, J., Liu, B., Ying, R., Pande, V., and Leskovec, J. Graph
convolutional policy network for goal-directed molecular
graph generation. In Advances in Neural Information
Processing Systems, 2018.

http://www.rdkit.org

Barking up the right tree: an approach to search over molecule synthesis DAGs

A. Appendix

Our appendix contains the following sections:

Section A.1 Provides further experimental results, for in-
stance we show examples of the synthesis DAGs de-
coded whilst interpolating in the latent space of DoG-
AE in Figure 6.

Section A.2 Provides further details about our model, for
instance it includes an algorithm of our generative pro-
cess (Alg. 1).

Section A.3 Provides further details about our experiments,
such as details on how we create a dataset of synthesis
DAGs, the definition of the synthesis score used in the
main paper, and implementation details of the models
and baselines we use.

A.1. Further experimental results

Interpolation in DoG-AE’s latent space The advantage
of our model over others is that it directly generates synthe-
sis DAGs, indicating how a generated molecule could be
made. To visualize the latent space of DAGs we start from
a training synthesis DAG and walk randomly in latent space
until we have output five different synthesis DAGs. We plot
the combination of these DAGs, which can be seen as a re-
action network, in Figure 5. We see that as we move around
latent space many of the synthesis DAGs have subgraphs
that are isomorphic, resulting in similar final molecules.

Further results for the Guacamol optimization tasks
Figure 6 shows the fraction of the top 100 molecules pro-
posed by each method for each task for which a synthetic
route can be found. Figure 7 shows the average synthesis
score over the 100 best molecules proposed by each method
for each task.

A.2. Further details about our model

In this section we provide further details of our model. Our
explanation is further broken down into three subsections.
In the first we provide more details on our generative model
for synthesis DAGs, including pseudocode for the full gen-
erative process. In the second subsection we provide further
details on how we use the Molecular Transformer for re-
action prediction to fill in the products of reactions at test
time. In the third and final subsection we provide further
information on the finetuning setup. The description of
the hyperparameters and specific architectures used in our
models are given in the next section.

A.2.1. A GENERATIVE MODEL OF SYNTHESIS DAGS

In this subsection we provide a more thorough description of
our generative model for synthesis DAGs. We first recap and

expand upon the notation that we use in the main paper. We
formally represent the DAG, M, as a sequence of actions,
with M = [V ... VL], Alongside this we denote the
associated action types as A = [A!,... AL]. The action
type entries A’ take values in {A1, A2, A3}, corresponding
to the three action types. The action type entry at a particular
step, A, is fully defined by the actions (and action types)
chosen previously to this time [, the exact details of which
we shall come back to later. Finally the set of molecules
existing in the DAG at time [are denoted (in an abuse of
our notation) by M ;.

Actions and the values that they can take We now de-
scribe the potential values that the actions can take. These
depend on the action type at the step, and we denote this
conditioning as V\iﬂ' For example for node addition ac-
tions A = A1, the possible values of V' (ie V|ZA,:) are
either 'B' for creating a new building block node, or 'P'
for a new product node. Building-block actions A! =
have corresponding values V! € R, which determine
which building block becomes a new ‘leaf’ node in the
DAG. Connectivity choice actions A’ = A3 have values
Vie Mo U{A71,/ 7}, where M, denotes the current
set of all molecules present in the DAG; selecting one of
these molecules adds an edge into the new product node.
The symbol /7 is an intermediate product stop symbol,
indicating that the new product node has been connected
to all its reactants (ie an intermediate product has been
formed); the symbol - £ is a final stop symbol, which trig-
gers production of the final product and the completion of
the generative process.

As hinted at earlier, the action type, A' is defined by the
previous actions V1, ... V!~! and action types (see also
Figure 2 in the main paper). More specifically, this happens
as follows:

V=1 ='B', then the next action type is building block
selection, A' =

Al = , then the next action type is again node
addition, A" = A1 (as you will have selected a building
block on the previous step).

V=1 ="'P', then the next action type is connectivity
choice, A’ = A3, to work out what to connect up to
the product node previously selected.

Al=1 = A3 then:
— if V=1 =7 then the next action type is to
choose a new node again, ie Al = AT
T =47 the generation is finished;

- if V=1 € M, then connectivity choice contin-
ues, ie Al = A3,

Barking up the right tree: an approach to search over molecule synthesis DAGs

Input DAG/Initial Re

— DAG 2

CC10N (c2cce(4] (+0) [0-1)ce2) CC(OIN1 . CC(=0)CL>
CO(=0)NIC(C)CN (c2cce(i) (=0) [0-])ce2)CO1C

([0+] (=0) (0-1)cc2)CC(CINL . NC=0>>
([4+] (=0) (0-1)<cc2)CC(OINIC=0

Product 2

0) [0-1)¢c2)CC(OIN1 .CCOCA0>> '
0) (0-1)cc2)CC(ENIC~0

0+ 0] ([0-Dclecy

c(Fee
CC10N (c2cce 4] (=0) [0-1)cc2)CO(CINL

1.CCIONCC(OINT>>

1) ¢c2) CO(@NL . CO(=0)CC(C)=0>>
2cce(Ds) (-0) [0-)c2)CCAC

x102 S -

Figure 5. We randomly walk in the latent space of a DoG-AE model and we decode out to similar DAGs nearby, unseen in training.
Reactions and nodes that exist in our training dataset are outlined in solid lines, whereas those that have been discovered by our model are

shown in dashed line.

Our generative process over these actions Our model
is shown at a high level in Figure 8 (see also Figure 3 of the
main paper), which serves to provide an intuitive understand-
ing of the generative process. The overall structure of the
probabilistic model is rather complex, as it depends on a se-
ries of branching conditions: we therefore give pseudocode
for the entire generative procedure in detail as a probabilistic
program in Algorithm 1. The program described in Alg. 1
defines a distribution over DAG serializations; running it
forward will sample from the generative process, but it can
equally well be used to evaluate the probability of a DAG
M of interest by instead accumulating the log probability
of the sequence at each distribution encountered during the
execution of the program. Note that given our assumption
that all reactions are deterministic and produce a single
primary product, product molecules do not appear in our
decomposition.

A.2.2. REACTION PREDICTION

As described in the main paper we use the Molecular Trans-
former (Schwaller et al., 2019) for reaction prediction. We
use pre-trained weights (trained on a processed USPTO (Jin
et al., 2017; Lowe, 2012) dataset without reagents). Fur-
thermore, we treat the transformer as a black box oracle
and so make no further adjustments to these weights when
training our model. We take the top one prediction from the
transformer as the prediction for the product, and if this is
not a valid molecule (determined by RDkit) then we instead
pick one of the reactants randomly.

When running our model at prediction time there is the
possibility of getting loops (and so no longer predicting a
DAQG) if the output of a reaction (either intermediate or final)
creates a molecule which already exists (in the DAG) as a
predecessor of one of the reactants. A principled approach
one could use to deal with this when using a probabilistic re-
action predictor model, such as the Molecular Transformer,
is to mask out the prediction of reactions that cause loops
in the reaction predictor’s beam search. However, in our
experiments we want to keep the reaction predictor as a
black box oracle for which we send reactants and for which
it sends us back a product. Therefore, to deal with any
prediction-time loops we go back through the DAG, before
and after predicting the final product node, and remove any
loops we have created by choosing the first path that was
predicted to each node.

A.2.3. FINETUNING

The algorithm we use for finetuning is given in Algorithm 2.

A.3. Further experimental details

This section provides further details about aspects of our
experiments. We start by describing how we create a dataset
of synthesis DAGs for training. We then describe how the
synthesis score we use in the optimization experiments is
calculated. Finally, the latter subsections provide specific
details on the hyperparameters we use.

Barking up the right tree: an approach to search over molecule synthesis DAGs

Algorithm 1 Probabilistic simulator for serialized DAGs

Require: Action networks for node addition, building block molecular identity, and connectivity choice: na(-), bbmi(-), cc(-);
Require: Reaction predictor: Product(-);

Require: Context RNN: ¢! = r(c'™', e');

Require: Continuous latent variable: z

Require: Linear projection for mapping continuous latent to RNN initial hidden: Lin(-).

Require: Gated graph neural network, GGNN(-), for computing molecule embeddings

Require: Learnable embeddings for abstract actions: kg, hp, h s, and h 4 .

: Initialize DAG M + [V! =B, Initialize A < [A' = A1, A% =

1
2: Initialize molecule set M < {} and set of unused reactants U <— {} {Track all / all unused molecules}
3: ¢! « Lin(z) {Z initializes the first hidden state of the recurrent NN}
4: €* < hp {nitial input into RNN reflects that new node added on first step. }
5: while VIMI £ 42 do
6: I+ |M|+1
7: ¢« r(c7t, e'){Update context}
8: if A' = Al then
9: w + na(c'); B <+ STACK([hg, hp])
10: l%m+—wBT
11: V! ~ softmax(wB7)
12: if V! ='B' then
13: AL A0 e hg
14: else if V! ='P' then
15: AT A3y e hp
16: Initialize intermediate reactant set R <— {} {Will temporarily store working reactants }
17: stop-actions <— [h] {You cannot stop for intermediate product until at least one reactant}
18: end if
19: elseif A' = A2 then
20: w < bbmi(c'); B <+ STACK([GGNN(g) for gin R \ M])
21: logits < wB7T
22: V' ~ softmax(logits) {Pick building block molecule}
23: AT ATy e GGNN(VY)
24: M+ MU{V}L, U« UU{VY
25: elseif A' = A3 then
26: w < cc(c'); B + STACK([GGNN(g) for g in M \ R] + stop_actions)
27: logits +— wB”
28: V' ~ softmax(logits) {Pick either (i) molecule to connect to, or (ii) to end and create product}
29: if V! =47 then
30: M"Y + Product(R)
3l M« MU{M™"}, U « U U {M™"}
32: AL A e e by,
33: elseif V' € M then
34: R+ RU{V'} {Update reactant set}
35: U < U \ {V*'}{Remove from pool of “unused” molecules}
36: AT A3 et GGNN(VY)
37: stop-actions <— [R,, h4] {Now you can stop for both final or intermediate product}
38: end if
39: endif

40: Update M « [V',...,V!]; A« [A',... A"

41: end while

42: Predict final product MT + Product(R U U){The final product considers both R and U’}
43: return M, M7

Barking up the right tree: an approach to search over molecule synthesis DAGs

[Amlodipine BN Aripiprazole =1 Deco Hop EEE Osimertinib

3 Ranolazine

B Perindopril [Scaffold Hop I Sitagliptin =] Valsartan EEE Zaleplon

0.4

Fraction of top 100 which are synthesizable

0.0

Graph GA
SMILES LSTM
SMILES GA
DoG-Gen
Graph GA
SMILES LSTM
SMILES GA
DoG-Gen
Graph GA
SMILES LSTM
SMILES GA
DoG-Gen
Graph GA
SMILES LSTM
SMILES GA
DoG-Gen
Graph GA
SMILES LSTM
SMILES GA

DoG-Gen

SMILES GA
DoG-GEN
Graph GA

SMILES LSTM

SMILES GA
DoG-Gen
Graph GA
SMILES LSTM
SMILES GA
DoG-Gen
Graph GA
SMILES LSTM
SMILES GA
DoG-Gen
Graph GA
SMILES LSTM
SMILES GA
DoG-Gen

SMILES LSTM

Figure 6. The fraction of the top 100 molecules proposed that for which a synthetic route can be found, over a series of ten Guacamol

tasks (Brown et al., 2019, §3.2).

[Amlodipine BN Aripiprazole =1 Deco Hop EEE Osimertinib

=
o

3 Ranolazine

B Perindopril [Scaffold Hop EEE Sitagliptin =] Valsartan EEE Zaleplon

o
®

o
o

o
IS

o
N

4
°

Mean synthiziable score of top 100 molecules proposed

Graph GA
SMILES LSTM
Graph GA

SMILES LSTM
Graph GA

SMILES LSTM
Graph GA

SMILES GA
DoG-Gen
SMILES GA
DoG-Gen
SMILES GA
DoG-Gen
SMILES LSTM
SMILES GA
DoG-Gen
Graph GA
SMILES LSTM
SMILES GA

RNINAT

DoG-Gen

Graph GA

SMILES LSTM
Graph GA

SMILES LSTM
Graph GA

Graph GA
SMILES LSTM
SMILES GA
DoG-GEN
SMILES GA
DoG-Gen
SMILES GA
DoG-Gen
SMILES LSTM
SMILES GA
DoG-Gen
Graph GA
SMILES LSTM
SMILES GA
DoG-Gen

Figure 7. The mean of the synthesis score of the top 100 molecules proposed by each method, over a series of ten Guacamol tasks (Brown

etal., 2019, §3.2).

A.3.1. CREATING A DATASET OF SYNTHESIS DAGS

In this subsection we describe how we create a dataset of
synthesis DAGs, with a high level illustration of the process
given in Figure 9. The creation of our synthesis DAG dataset
starts by collecting the reactions from the USPTO dataset
(Lowe, 2012), using the processed and cleaned version of
this dataset provided by (Jin et al., 2017, §4). We filter
out reagents (molecules that do not contribute any atoms
to the final product) and multiple product reactions (97%
of the dataset is already single product reactions) using the
approach of Schwaller et al. (2018, §3.1).

This processed reaction data is then used to create a reaction
network (Jacob & Lapkin, 2018; Grzybowski et al., 2009).
To be more specific, we start from the reactant building
blocks specified in Bradshaw et al. (2019, §4) as initial

molecule nodes in our network, and then iterate through
our list of processed reactions adding any reactions (and the
associated product molecules) (i) that depend only molecule
nodes that are already in our network, and (ii) where the
product is not an initial building block. This process repeats
until we can no longer add any of our remaining reactions.

This reaction network is then used to create one synthesis
DAG for each molecule. To this end, starting from each
possible (non building block) molecule node in our reac-
tion network, we step backwards through the network until
we find a sub-graph of the reaction network (without any
loops) with initial nodes that are from our collection of
building blocks. When there are multiple possible routes we
pick one. This leaves us with a dataset of 72008 synthesis
DAGs, which we use approximately 90% of as training data
and split the remainder into a validation dataset (of 3601

Barking up the right tree: an approach to search over molecule synthesis DAGs

selected selected
selected

selected = selected = a - ~
000000 000200 © @O‘

- " Building block identity Node addition - ~Building block identity ‘Node addition NN Comectiviy choice
network network network network O

NI e
I corvere” vector ET] oo vector T corvere” vector T convex” Vector (I corter” veetor

/
previods action |
embedding |

)

ected selected elected selected

selecte
(@] (E] (&) @ OO0 8!

NN Comnectivty choice S Connectivity choice Node addition O Building block identity Node addition
O e QO e it e

o000 o0 00 O
L]

s "mmmcccccccca,

1
~o g
\

@G

previous action previods action previous action

oy o @

Secccccccace

embedding embedding ‘ ; embedding "’:;"‘;ﬁ/j:f;” i‘. / embedding
g g .
14 selected selected selected selected
]
] p!
i Ooooee 20ooee owoode O E
[} C O C
H N Ny >(//
' Connectivity choice = Connectivity choice Node addition
: o~ network N network network
Pt SFang! Rt S
: o0 0O o0 0O
]
' BRI context vector W context” Vector BT I contet” Vector
'
' A A A
.
‘- ----------------------
¥)m -)m T)m S
(Y
/]
]] / \ ' :
£ ' S \ &= :
{ i [)
embedding embedding \ J embedding '
\ /]
-]
’
g .
. selected selected
.
B T
: = &) Doooo0®@d
]
: 0-.0_0
' O Building block identity Node addition NN /Comcwmhm
H network network NI N, network
: OO0 0O R
: O O O O
]
]] context” vector T “context vector] contexe” Vector
]
' A
'
.
<

previont. action
embedding

e/ .():

-

Figure 8. This is an expanded version of Figure 3 in the main paper showing all the actions required to produce the DAG for Paracetemol
(see also Figure 1 and 2 in the main paper). A shared RNN (recurrent neural network) provides a context vector for the different action
networks. Based on this context vector, each type of action network chooses an action to take (some actions are masked out as they are not
allowed, for instance suggesting a building block already in the graph, or choosing to make an intermediate product before choosing at
least one reactant). Note embeddings of molecular graphs are computed using a GNN (graph neural network). The initial hidden vector of
the shared RNN is initialized using a latent vector z in our autoencoder model DoG-AE; in DoG-Gen it is set to a constant. The state of
the DAG at each stage of the generative process is indicated in the dotted gray circles.

Barking up the right tree: an approach to search over molecule synthesis DAGs

Algorithm 2 Synthesis DAG Fine-Tuning. Note that for finetuning we use the model DoG-Gen, in which z is always set at
0, hence we drop our specific dependence on z in this algorithm.

Require: Initial model pg (M), iterations I, threshold K, sample size N, objective h(-), pool of seen synthesis DAGs (initially empty),
P.
1: Compute the score h(-) of all products in the initial training set and add to P
2: fori=1,...,1do
3: Sample N DAGs from pg(M)
4: Compute the score h(-) of the N products and add to pool, P
5: Select the K DAGs with the highest score from P
6
7
8

Run two training epochs on 6 using these K DAGs as training data
: end for
: return updated distribution pg (M), pool of all seen synthesis DAGs (ranked) P

Input: USPTO dataset as atom-mapped SMILES lines Remove atom-mappings and reagents so that we have a list of reactions, where each

1610 16 GRS 170 60 e 1982201 01 (2) o reaction is a mapping from a set of reactants to one product molecule.

(O e 01130 01 ()61)00 Lo o (ot

o811 .01 00,3 G 61 (0:71) (01 151 [0R: 161 CHR: £71) CH: 151) (e 12 et 1311 16-1956-1516-

(0014) 0215 O 1) (-£0:20) (10120 G et 63 CL057) C[0561) (08590 et 10) et 1) s 1201 {€1:12) A O Ov O

(121615 vee

ottt e s s O +0L — C

itan ¥ =h
1 O
[A —
e e o o e " o Tt o Lo, H
oms1cir o (1 30126 o)) 2 s o -2
11 8111, 1011121 [e:1911 e 16]
o200 (211 (bl (0209 . i
(5:21) Lo 197200118 e: 7130 6] (e 11 ° N
0:207) (o2:101) (c3:11) 5-21 2124)k + o O y
6 H:16] [c:17] ([C:23] ([C:24] (=[0:25)) [0H:261) ([F:27] o e X

3 F:280) (18] (- 19] (c-201200 €81 (619 (101113 [P+ 121) ((F130) (P2 141) et 1011

1003129) (©:30) (€2 211)-

(211 (Lo = (61 Clestatee) e e (20 028 oz (27 i A~

(F2261) Lct 18] 411 c201200:21) (03:22) 61 (c8)Les8) (G111 F: 131 (1131 (2 14) el 10} 1 o

S e i) o — \QY
Build up reaction network by starting from specified building blocks then Create synthesis DAG by picking each intermediate product in turn and searching
repeatedly iterating through the available reactions and adding any that can be back through the reaction network until we have found a sub-graph that starts
made from molecules already existing in the graph. from building blocks only.

Figure 9. An illustration of how we create a dataset of synthesis DAGs from a dataset of reactions. We first clean up the reaction dataset
by removing reagents (molecules which do not contribute atoms to the final product) and any reactions which lead to more than one
product. We then form a modified reaction network (we do not allow loops back to building block molecules), which is a directed graph
showing how molecules are linked to others through reactions. This process starts by adding molecule nodes corresponding to our initial
building blocks. We then repeatedly iterate through our list of reactions and gradually add reaction nodes (and their associated product
nodes) to the graph if both (i) the corresponding reaction’s reactants are a subset of the molecule nodes already in the graph, and (ii) the
product is not a building block. Finally for each possible product node we iterate back through the directed edges until we have selected a
subgraph without any loops, where the initial nodes are members of our set of building blocks.

synthesis DAGs) and test dataset (of 3599 synthesis DAGs). A.3.2. SYNTHESIZABILITY SCORE

The synthesizability score is defined as the geometric mean
of the nearest neighbor reaction similarities:

2

Barking up the right tree: an approach to search over molecule synthesis DAGs

where R is the list of reactions making up a synthesis DAG,
r € R are the individual reactions in the DAG, nn(r) is
the nearest neighbor reaction in the chemical literature in
Morgan fingerprint space, and (-, -) is Tanimoto similarity
over Morgan reaction fingerprints (Schneider et al., 2015).

A.3.3. ATOM FEATURES USED IN DOG MODELS

The atom features we use as input to our graph neural net-
works (GNNs) operating on molecules are given in Table 3.
These features are chosen as they are used in Gilmer et al.
(2017, Table 1) (we make the addition of an expanded one-
hot atom type feature, to cover the greater range of elements
present in our molecules).

Table 3. Atom features we use as input to the GGNN. These are
calculated using RDK:it.

Feature Description

Atom type 72 possible elements in total, one hot
Atomic number integer

Acceptor boolean (accepts electrons)

Donor boolean (donates electrons)
Hybridization One hot (SP, SP2, SP3)

Part of an aromatic ring boolean

H count integer

A.3.4. IMPLEMENTATION DETAILS FOR DOG-AE

In this subsection we describe specifics of our DoG-AE
model used to produce the results in Table 1 of the main

paper.

Forming molecule embeddings For forming molecule
embeddings we use a GGNN (Gated Graph Neural Network)
(Li et al., 2016); this operates on the atom features described
in Table 3. This graph neural network (GNN) was run for
4 propagation steps to update the node embeddings, before
these embeddings were projected down to a 50 dimensional
space using a learnt linear projection. The node embeddings
were then combined to form molecule embeddings through
a weighted sum. The same GNN architecture was shared
between the encoder and the decoder.

Encoder The encoder (shown in Figure 10) consists of
two GGNNs. The first, described above, creates molecule
embeddings which are then used to initialize the node em-
beddings in the synthesis DAG. The synthesis DAG node
embeddings, which are 50 dimensional, are further updated
using a second GGNN. Seven propagation steps of message
passing are carried out on the DAG, where the messages
are passed forward on the DAG from the ‘leaf’ nodes to
the final product node. Finally, the node embedding of the
final product molecule node in the DAG is passed through
an additional linear projection to parameterize the mean

and log variance of independent Gaussian distributions over
each dimension of the latent variable, z.

Decoder For the decoder we use a 3 layer GRU RNN
(Cho et al., 2014) to compute the context vector. The hidden
layers have a dimension of 200 and whilst training we use a
dropout rate of 0.1. For initializing the hidden layers of the
RNN we use a linear projection (the parameters of which
we learn) of z. The action networks are feedforward neural
networks with one hidden layer (dimension 28) and ReLU
activation functions. For the abstract actions (such as 'B'or
'P") we learn 50 dimensional embeddings, such that these
embeddings have the same dimensionality as the molecule
embeddings we compute.

Training We train our model, with a 25 dimensional la-
tent space, using the Adam optimizer (Kingma & Ba, 2015),
an initial learning rate of 0.001, and a batch size of 64. We
train the autoencoder using the Wasserstein autoencoder loss
(Tolstikhin et al., 2017), with A = 10 and an inverse multi-
quadratics kernel for computing the MMD-based penalty,
as this is what is used in Tolstikhin et al. (2017, §4).

Our model, DoG-AE, is trained using teacher forcing for
400 epochs (each epoch took approximately 7 minutes) and
we multiplied the learning rate by a factor of 0.1 after 300
and 350 epochs. DoG-AE obtains a reconstruction accuracy
(on our held out test set) of 65% when greedily decoding
(greedy in the sense of picking the most probable action at
each stage of decoding).

A.3.5. IMPLEMENTATION DETAILS FOR DOG-GEN

For DoG-Gen we also used a GGNN to create molecule
embeddings in a similar way to DoG-AE. The GGNN was
run for 5 rounds of message passing to form 80 dimensional
node embeddings; these node embeddings were agglomer-
ated into a 160 dimensional molecule embedding through
a linear projection and weighted sum. For generating the
context vector we use a 3 layer GRU RNN with 512 di-
mensional hidden layers. The action networks used were
feed-forward neural networks with one hidden layer of di-
mension 28 and ReLU activation functions. We trained our
model for 30 epochs.

For optimization we start by evaluating the score on every
synthesis DAG in our training and validation datasets; we
then run 30 stages of finetuning, sampling 7000 synthesis
DAGs at each stage and updating the weights of our model
using the best 1500 DAGs seen at that point as a finetuning
dataset.

A.3.6. DETAILS OF BASELINES FOR GENERATION TASKS

We used the following implementations for the baselines:

Barking up the right tree: an approach to search over molecule synthesis DAGs

1 Molecular Graph Embeddings Formed To Initialise DAG Node Embeddings 2 Message Passing Carried Out On DAG To Update Node Embeddings

(XX J
ii. Weighted sum to form
graph embedding

i. Messages passed

H H ° d atom vectors updated
e al an,

to form atom embeddings

ii. Update node representations iii. Repeat!

Figure 10. The encoder embeds the DAG of Graphs (DoG) into a continuous latent space. It does this in a two step process. In step 1 it
computes initial embeddings for the DAG nodes by forming graph-level embeddings using a GNN on the molecule associated with each
node. In step 2 a message-passing algorithm is again used, however, this time on the DAG itself, passing messages forward. The final
representation is taken from the node embedding of the final product node.

e SMILES LSTM (Segler et al, 2017b):
https://github.com/benevolentAI/
guacamol_baselines.

e JT-VAE (Jin et al., 2018): https://github.com/
wengong-jin/icmll18-jtnn (we used the up-
dated version of their code, ie the fast_jtnn ver-
sion)

e CGVAE (Liu et al, 2018): https:
//github.com/Microsoft/
constrained-graph-variational-autoencoder

* Molecule Chef (Bradshaw et al.,, 2019):
https://github.com/john-bradshaw/
molecule-chef

For the CVAE, GVAE and GraphVAE baselines we used
our own implementations. We tuned the hyperparameters of
these models on the ZINC or QM9 datasets so that we were
able to get at least similar (and often better) results com-
pared to those originally reported in Kusner et al. (2017);
Simonovsky & Komodakis (2018).

When training the GraphVAE on our datasets we exclude
any molecules with greater than 20 heavy atoms, as this
procedure was found in the original paper to give better
performance when training on ZINC (Simonovsky & Ko-
modakis, 2018, §4.3). We use a 40 dimensional latent space,
a GGNN (Li et al., 2016) for the encoder, and use max-
pooling graph matching during training.

For the CVAE and GVAE we use 72 dimensional latent
spaces. We multiply the KL term in the VAE loss by a
parameter 3 (Higgins et al., 2017; Alemi et al., 2018); this
[term is then gradually annealed in during training until
it reaches a final value of 0.3. We use a 3 layer GRU RNN
(Cho et al., 2014) for the decoder with 384 dimensional
hidden layers. The encoder is a 3 layer bidirectional GRU
RNN also with 384 dimensional hidden layers.

https://github.com/benevolentAI/guacamol_baselines
https://github.com/benevolentAI/guacamol_baselines
https://github.com/wengong-jin/icml18-jtnn
https://github.com/wengong-jin/icml18-jtnn
https://github.com/Microsoft/constrained-graph-variational-autoencoder
https://github.com/Microsoft/constrained-graph-variational-autoencoder
https://github.com/Microsoft/constrained-graph-variational-autoencoder
https://github.com/john-bradshaw/molecule-chef
https://github.com/john-bradshaw/molecule-chef

