Beta Embeddings for Multi-Hop Logical Reasoning in Knowledge Graphs

Anonymous Authors'

Abstract

One of the fundamental problems in Artificial In-
telligence is to perform complex multi-hop logical
reasoning over the facts captured by a knowledge
graph (KG). This problem is challenging, because
KGs can be massive and incomplete. Recent ap-
proaches embed KG entities in a low dimensional
space and then use these embeddings to find the
answer entities. However, it remains a challenge
to handle arbitrary first-order logic (FOL) queries
as present methods are limited to only a subset
of FOL operators. In particular, the negation op-
erator is not supported. An additional limitation
of present methods is also that they cannot nat-
urally model uncertainty. Here, we present BE-
TAE, a probabilistic embedding framework for
answering arbitrary FOL queries over KGs. BE-
TAE is the first method that can handle a complete
set of first-order logical operations: conjunction
(N), disjunction (V), and negation (—). A key
insight of BETAE is to use probabilistic distribu-
tions with bounded support, specifically the Beta
distribution, and embed queries/entities as distri-
butions, which allows us to also faithfully model
uncertainty. Logical operations are performed
in the embedding space by neural operators over
the probabilistic embeddings. BETAE achieves
state-of-the-art performance on answering arbi-
trary FOL queries on three large, incomplete KGs.

1. Introduction

Reasoning in KGs is a fundamental problem in Al In
essence, it involves answering first-order logic (FOL)
queries over KGs using operators existential quantification
(3), conjunction (A), disjunction (V), and negation (—). It
presents a number of significant challenges. One challenge
is the scale of KGs. Although queries could be in principle

! Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

answered by directly traversing the KG, this is problematic
in practice since multi-hop reasoning involves an exponen-
tial growth in computational time/space. Another challenge
is incompleteness, where some edges between entities are
missing. Most real-world KGs are incomplete and even a
single missing edge may make the query unanswerable.

Previous methods (Bordes et al., 2013; Trouillon et al., 2016;
Sun et al., 2019; Zhang et al., 2019; Yang et al., 2015) aim
to address the above challenges by using embeddings and
this way implicitly impute the missing edges. Methods
also embed logical queries into various geometric shapes
in the vector space (Hamilton et al., 2018; Ren et al., 2020;
Guu et al., 2015; Das et al., 2017). The idea here is to
design neural logical operators and embed queries itera-
tively by executing logical operations according to the query
computation graph (Fig. 1). However, these methods only
support existential positive first-order queries, a subset of
FOL queries with existential quantification (3), conjunction
(A) and disjunction (V), but not negation (—). Negation is a
fundamental operation and required for the complete set of
FOL operators. Modeling negation so far has been a major
challenge. The reason is that these methods embed queries
as closed regions, e.g., a point (Hamilton et al., 2018; Guu
et al., 2015; Das et al., 2017) or a box (Ren et al., 2020)
in the Euclidean space, but the complement (negation) of
a closed region does not result in a closed region. Further-
more, current methods embed queries as static geometric
shapes and are thus unable to faithfully model uncertainty.

Here we propose Beta Embedding (BETAE), a method for
multi-hop reasoning over KGs using full first-order logic
(FOL). We model both the entities and queries by proba-
bilistic distributions with bounded support. Specifically, we
embed entities and queries as Beta distributions defined on
the [0, 1] interval. Our approach has the following important
advantages: (1) Probabilistic modeling can effectively cap-
ture the uncertainty of the queries. BETAE adaptively learns
the parameters of the distributions so that the uncertainty of
a given query correlates well with the differential entropy
of the probabilistic embedding. (2) We design neural logi-
cal operators that operate over these Beta distributions and
support full first-order logic: 3, A, V and most importantly
—. The intuition behind negation is that we can transform
the parameters of the Beta distribution so that the regions of
high probability density become regions of low probability

Beta Embeddings for Multi-Hop Logical Reasoning in Knowledge Graphs

q=V,.3V : Locate(Europe,V) A = Held(World Cup,V) A President(V,V,)

*., Intersection — , Intrs.
'.,. Projection .

Europe
Projection

Projection
Projection_Negation

World CupO—>O= ,o‘ Intersecnon

(A) Computation Graph

Figure 1. BETAE answers first-order logic queries that include 3, A, V and —

Pm Neg
o Intrs

Rebelo de Sousa (PT)\/

Asanp

0..
PI’OJ

(B) BETAE Approach

Macron (FR)%

logical operators. (A): A given query “List the

presidents of European countries that have never held the World Cup” can be represented by its computation graph where each node
represents a set of entities and each edge represents a logical operation. (B): BETAE models each node as Beta distributions and each edge
transforms the distribution via a projection, negation, or intersection operation. Portuguese president Rebelo de Sousa is an answer entity,
since its embedding is “’close” to the query embedding, while the French president Macron is not.

density and vice versa. (3) Our neural modeling of A and
— naturally corresponds to the real operations and captures
several properties of first-order logic. For example, applying
the negation operator twice will return the same input. (4)
Using the De Morgan’s laws, V can be approximated with
A and —, allowing BETAE to handle a complete set of FOL
operators and thus supporting arbitrary FOL queries.

We perform experiments on three standard KG datasets
and show that BETAE is able to achieve state-of-the-art
performance in handling conjunctive queries and the first to
handle arbitrary FOL logic queries in a scalable manner.

2. Preliminaries

Knowledge Graph (KG) G is heterogeneous graph structure
that consists of a set of entities V and a set of relation
types R, G = (V,R). Each relation type r € R is a
binary functionr : VXV — {True,False} thatindicates
(directed) edges of relation type r between pairs of entities.

We are interested in answering first-order logic (FOL)
queries with logical operations including conjunction (A),
disjunction (V), existential quantification (3) and negation
(—) We define valid FOL queries in its disjunctive normal
form (DNF), i.e., disjunction of conjunctions.

First-order logic queries: A FOL query ¢ consists of a non-
variable anchor entity set V, C V, existentially quantified
bound variables V7, ..., Vi and a single target variable V>,
which provides the query answer. The disjunctive normal
form of a logical query q is a disjunction of one or more
conjunctions: ¢[Vz] = V2 . 3Vy,... ., Vi i1 Vea V.o Ve,
where each c represents a conjunctive query with one or
more literals e. ¢; = e;1 A€o A -+ A e;m; each literal e
represents an atomic formula or its negation. e;; = r(vq, V)
or = 7(ve, V) or r(V', V) or = r(V', V), where v, € V,,
Ve {‘/?,Vl,...,Vk},V/ S {Vl,...,Vk},T e R.

Computation Graph: As shown in Fig. 1, we can derive,

for a given query, its corresponding computation graph
(tree). This directed graph demonstrates the computation
process to answer the query. Each node of the computa-
tion graph represents a distribution over a set of entities in
the KG and each edge represents a logical transformation
of this distribution. Specifically, the root node represents
the unique target variable, which is the set of answer enti-
ties. The mapping along each edge applies a certain logical
operator: (1) Relation Projection: Given a set of entities
S C V and relation type r € R, compute adjacent enti-
ties Uyes A, (v) related to S via r: A,.(v) = {v/ € V :
r(v,v’) = True}; (2) Intersection: Given sets of enti-
ties {S1, Sa, ..., Sn}, compute their intersection N?_;.5;;
(3) Complement/Negation: Given a set of entities S C V,
compute its complement S = V \ S. We do not define
a union operator for the computation graph, which corre-
sponds to disjunction. However, this operator is not needed,
since according to the De Morgan’s laws, given sets of en-

tities, U7, S; is equivalent to N?_, S. In order to answer a
given FOL query, we can follow the computation graph and
execute logical operators.

3. Probabilistic Embeddings for Reasoning
3.1. Beta Embeddings for Entities and Queries

For each entity v € V), we assign an initial Beta embed-
ding with learnable parameters. We also embed each query
q with a Beta embedding, which is calculated by a set of
probabilistic logical operators (introduced in the next sec-
tion) following the computation graph. Note that BETAE
learns high-dimensional embeddings where each embed-
ding consists of multiple independent Beta distributions,
capturing a different aspect of a given entity or a query:
S =[(a1,51),..., (an, Bn)], where n is a hyperparameter.
We denote the PDF of the i-th Beta distribution in S as
ps,i- Without loss of generality and to ease explanation, we
shall assume that each embedding only contains one Beta
distribution: S = [(«,)], and we denote its PDF as pg.

Beta Embeddings for Multi-Hop Logical Reasoning in Knowledge Graphs

S

0.474 1

0.571 10

0 02

— I({ $1,S2})

0.0 0.5

10 0.0 05 1.0

Figure 2. Illustration of our probabilistic intersection operator Z (left) and probabilistic negation operator A (right). Z transforms the input
distribution by taking the weighted product of the PDFs; N\ transforms the input distribution by taking the reciprocal of its parameters.

3.2. Probabilistic Logical Operators

In order to answer a query using the computation graph, we
need probabilistic logical operators for the Beta embedding.

Probabilistic Projection Operator P: In order to model
the relation projection from one distribution to another, we
design a probabilistic projection operator P that maps from
one Beta embedding S to another Beta embedding S’ given
the relation type . We then learn a transformation neu-
ral network for each relation type r, which we implement
as a multi-layer perceptron (MLP): S’ = MLP,.(S). The
goal here is that for all entities S covered by the input dis-
tribution, we can achieve the embedding distribution that
covers entities S’ = UyesA,(v), where A,.(v) = {v' € V:
r(v,v") = True}.

Probabilistic Intersection Operator Z: Given n input em-
beddings {S1,...,Sn}, the goal of probabilistic intersec-
tion operator Z is to calculate the Beta embedding St e
that represents the intersection of the distributions (i.e, the
intersection of the distributions defining fuzzy input sets
of entities). We model Z by taking the weighted prod-
uct of the PDFs of the input Beta embeddings ps. ... =
5 [Ipg! ... pg". where Z is a normalization constant and
wi, ..., W, are the weights with their sum equal to 1.

We use the attention mechanism and learn wq,...,w,
through a MLP,.. that takes as input the parameters of
S; and outputs a scalar. Since S; is a Beta distribution
[(a, B;)], the weighted product pg, .. is a linear interpola-
tion of the parameters of the inputs. We derive the parame-
ters of Stpcer to be [(O- wiay, Y wiBs)]:

DSy (@) 0 w2 D (1 —)2 sl
= g2 Wi (] —)2 Wil (1)

Our approach has three advantages (Fig. 2): (1) Z demon-
strates a zero-forcing behavior (Sun & Nielsen, 2019) where
the effective support of St:.. approximates the intersec-
tion of the effective support of the input embeddings. (2)
T is closed, since the weighted product of PDFs of Beta
distributions is proportional to a Beta distribution. (3) Z is
commutative w.r.t the input Beta embeddings.

Probabilistic Negation Operator \': We require a proba-
bilistic negation operator A" that takes Beta embedding S as
input and produces an embedding of the complement A/(S)

as a result. A desired property of N is that the density func-
tion should reverse in the sense that regions of high density
in ps should have low probability density in py(s) and vice
versa (Fig. 2). For the Beta embeddings, this property can
be achieved by taking the reciprocal of the shape parameters
o and B: N([(er, B)]) = [(£, %)] As shown in Fig. 2,
the embeddings switch from bell-shaped unimodal density
function with 1 < «, 3 to bimodal density function with
0<a,B<1.

By defining the probabilistic logical operators Z and N,
BETAE has the following properties: Given Beta embed-
ding S, S is a fixed point of N o N: N(N(S)) = S; we
have Z({S,S,...,S}) = S. This shows that our design of
the probabilistic intersection operator and the probabilistic
negation operator achieves two important properties that
obey the rules of real logical operations.

3.3. Learning Beta Embeddings

Distance: Assume each embedding consists of n indepen-
dent Beta distributions. Given an entity embedding v with
parameters [(a, 5Y),..., (a2, 8Y)], and a query embed-
ding q with parameters [(af, 87), ..., (a%, 39)], we define
the distance between this entity v and the query g as the
sum of KL divergence between the two Beta embeddings
along each dimension: Dist(v;q) = Y1 KL(Pv,i; Pq,i)s
where p, ; represents the ¢-th Beta distribution.

Training Objective: Our objective is to minimize the
distance between a query and its answers while maxi-
mizing the distance between the query and other ran-
dom entities via negative sampling (Sun et al., 2019;
Ren et al., 2020): L = —logo(y—Dist(v;q)) —
25:1 logo (Dist(v];q) — 7). where v € [g] belongs
to the answer set of ¢, v’; ¢ [q] represents a random negative
sample, and 7y denotes the margin. In the loss function, we
use k£ random negative samples and optimize the average.

4. Experiments

We evaluate BETAE on multi-hop reasoning over standard
KGs. Our experiments demonstrate that: (1) BETAE effec-
tively answers arbitrary FOL queries. (2) BETAE outper-
forms less general methods (Hamilton et al., 2018; Ren et al.,
2020) on EPFO queries (with only 3, A and V). (3) The
probabilistic embeddings correspond well to the uncertainty.

Beta Embeddings for Multi-Hop Logical Reasoning in Knowledge Graphs

Dataset

Method

1p

2p

3p

2i

3i

2in

pi ip 3in inp pni

FB15k Q2B 0.301 0219 0.262 | 0.331 0.270 | 0.297 0.139 - - - - -

BETAE 0.373 0478 0472 | 0572 0.397 | 0519 0421 0.622 0.548 0459 0.465 0.608
FB15k-237 Q2B 0.184 0226 0.269 | 0.347 0436 | 0.361 0.199 - - - - -

BETAE 039 0.503 0.569 | 0.598 0.516 | 0.540 0.439 | 0.685 0.579 0.511 0.468 0.671
NELL995 Q2B 0.154 0.288 0.305 | 0.380 0.410 | 0.361 0.345 - - - - -

BETAE 0423 0552 0.564 | 0.594 0.610 | 0.598 0.535 | 0.711 0.595 0354 0.447 0.639

Table 1. Spearman’s rank correlation between learned embedding and the number of answers of queries.

Training + Evaluation Queries

-0 @-0+0 0-0-0-0

Further Evaluation Queries

u u
12 3p 2 3 o0 &o -0
n
oo i i 2u u
S Pty » b o w
n
2in 3in inp pni pin
Figure 3. Training and evaluation queries with query structures.
Dataset Model 1p 2p 3p 2i 3i pi ip 2u up avg
BETAE | 489 16.0 16.1 | 40.2 51.6 | 29.6 183 | 252 16.0 | 29.1
FB15k Q2B 509 11.7 72 379 505 | 258 157 | 204 84 | 254
GQE 342 8.3 50 | 238 349 | 155 112 | 115 5.6 16.6
BETAE | 28.0 4.8 46 | 169 301 | 13.2 5.6 59 4.0 12.6
FB15k-237 | Q2B 28.0 4.0 2.8 167 285 | 120 6.8 4.6 32 11.8
GQE 224 2.8 2.1 11.7 209 8.4 5.7 33 2.1 8.8
BETAE | 42.8 79 6.6 | 257 363 | 16.8 8.8 6.2 45 | 173
NELL995 | Q2B 234 85 6.6 199 306 | 141 109 4.7 5.6 13.8
GQE 154 6.7 5.0 143 204 | 10.6 9.0 29 5.0 9.9

Table 2. H@1 results (%) of BETAE, Q2B and GQE on answering
EPFO (3, A, V) queries.

4.1. Experiment Setup

Our experimental setup is focused on incomplete KGs and
thus we measure performance only over answer entities
that require (implicitly) imputing at least one edge. We use
three standard KGs with official training/validation/test edge
splits, FB15k (Bordes et al., 2013), FB15k-237 (Toutanova
& Chen, 2015) and NELL995 (Xiong et al., 2017) and fol-
low (Ren et al., 2020) for the preprocessing.

Evaluation Protocol: We first build three KGs: train-
ing KG, validation KG, test KG using training edges,
training+validation edges, training+validation+test edges,
respectively. Our evaluation focuses on incomplete
KGs, so given a test (validation) query g, we are inter-
ested in discovering non-trivial answers [q]iest \[¢]va1
([glva1\[g]train)- For each non-trivial answer v of a test
query ¢, we rank it against non-answer entities V\[¢]cest -
We denote the rank as r and calculate the Mean Reciprocal
Rank (MRR) and Hits at K (H@ K) as evaluation metrics.

Queries: We base our queries on the 9 query structures
proposed in Query2Box (Q2B) (Ren et al., 2020) and further
create queries with negation. As shown in Fig. 3, we look
at the 4 query structures with intersection (2i/3i/ip/pi)
and perturb one edge to perform set complement before
taking the intersection, resulting in 2in/3in/inp/pni/pin
structures. See Appen. A for query generation details.

As summarized in Fig. 3, our training and evalu-
ation queries consist of the 5 conjunctive structures
(1p/2p/3p/2i/3i) and also 5 novel structures with nega-
tion (2in/3in/inp/pni/pin). Furthermore, we also evalu-
ate model’s generalization ability which means answering
queries with structures that the model has never seen during

training. We further include ip/pi/2u/up for evaluation.

Baselines: We consider two state-of-the-art baselines for
answering complex logical queries on KGs: Q2B (Ren et al.,
2020) and GQE (Hamilton et al., 2018). Both methods
design their corresponding projection and intersection op-
erators, however, neither can handle the negation operation
since the complement of a point/box in the Euclidean space
is no longer a point/box.

4.2. Modeling Arbitrary FOL Queries

Modeling EPFO (containing only 3, A and V) Queries:
First we compare BETAE with baselines that can only
model queries with conjunction and disjunction (but no
negation). Table 2 shows the H@1 of the three methods.
BETAE achieves on average 14.5%, 6.7% and 25.4% rela-
tive improvement H@ 1 over previous state-of-the-art Q2B
on FB15k, FB15k-237 and NELL995, respectively. We refer
the reader to Tables 8 in Appen. C for the MRR results.

Dataset

Metrics

2in 3in inp pin pni avg

—— MRR | 135 138 114 61 117 | 11.3
H@I0 | 292 304 232 134 249 | 242

MRR | 49 75 74 36 32 | 33

FBISK-237 | yeio | 106 165 160 77 67 | 115
MRR | 52 77 97 32 32 | 538

NELL9S | heto | 115 178 208 70 65 | 127

Table 3. Results (%) of BETAE on queries with negation.

Modeling Queries with Negation: Next, we evaluate our
model’s ability to model queries with negation. We report
both the MRR and H@ 10 results in Table 3. Overall, BETAE
generalizes well and provides the first embedding-based
method that can handle arbitrary FOL queries.

4.3. Modeling the Uncertainty of Queries

We also investigate whether our Beta embeddings are able
to capture uncertainty. The uncertainty of a (fuzzy) set
can be characterized by its cardinality. Given a query with
answer set [¢], we aim to calculate the correlation between
the differential entropy of the Beta embedding pjq) and
the cardinality of the answer set |[¢]|. For comparison,
Q2B embeds each query as a box, which can also model
the uncertainty of the query by expanding/shrinking the
box size. Table 1 and Table 9 (in Appen. C) show that
BETAE achieves up to 77% better correlation than Q2B.
We conclude that BETAE with Beta embeddings is able to
capture query uncertainty. Furthermore, note that BETAE
naturally learns this property without any regularization to
impose the correlation during training.

Beta Embeddings for Multi-Hop Logical Reasoning in Knowledge Graphs

References

Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., and
Yakhnenko, O. Translating embeddings for modeling
multi-relational data. In Advances in Neural Information
Processing Systems (NeurIPS), pp. 2787-2795, 2013.

Das, R., Neelakantan, A., Belanger, D., and McCallum, A.
Chains of reasoning over entities, relations, and text using
recurrent neural networks. In European Chapter of the
Association for Computational Linguistics (EACL), pp.
132-141, 2017.

Guu, K., Miller, J., and Liang, P. Traversing knowledge
graphs in vector space. In Empirical Methods in Natural
Language Processing (EMNLP), 2015.

Hamilton, W., Bajaj, P., Zitnik, M., Jurafsky, D., and
Leskovec, J. Embedding logical queries on knowledge
graphs. In Advances in Neural Information Processing
Systems (NeurIPS), 2018.

Ren, H., Hu, W., and Leskovec, J. Query2box: Reason-
ing over knowledge graphs in vector space using box
embeddings. In International Conference on Learning
Representations (ICLR), 2020.

Sun, K. and Nielsen, F. Information-geometric set embed-
dings (igse): From sets to probability distributions. arXiv
preprint arXiv:1911.12463, 2019.

Sun, Z., Deng, Z.-H., Nie, J.-Y., and Tang, J. Rotate: Knowl-
edge graph embedding by relational rotation in complex
space. In International Conference on Learning Repre-
sentations (ICLR), 2019.

Toutanova, K. and Chen, D. Observed versus latent features
for knowledge base and text inference. In Proceedings
of the 3rd Workshop on Continuous Vector Space Models
and their Compositionality, pp. 57-66, 2015.

Trouillon, T., Welbl, J., Riedel, S., Gaussier, E., and
Bouchard, G. Complex embeddings for simple link pre-
diction. In International Conference on Machine Learn-
ing (ICML), pp. 2071-2080, 2016.

Xiong, W., Hoang, T., and Wang, W. Y. Deeppath: A
reinforcement learning method for knowledge graph rea-
soning. In Empirical Methods in Natural Language Pro-
cessing (EMNLP), 2017.

Yang, B., Yih, W.-t., He, X., Gao, J., and Deng, L. Embed-
ding entities and relations for learning and inference in
knowledge bases. In International Conference on Learn-
ing Representations (ICLR), 2015.

Zhang, S., Tay, Y., Yao, L., and Liu, Q. Quaternion knowl-
edge graph embeddings. In Advances in Neural Informa-
tion Processing Systems (NeurlPS), 2019.

Beta Embeddings for Multi-Hop Logical Reasoning in Knowledge Graphs

Appendix

A. Query Generation and Statistics

Generation of EPFO (with 3, V and A) Queries: Following (Ren et al., 2020), we generate the 9 EPFO query structures
in a similar manner. Given the three KGs, and its training/validation/test edge splits, which is shown in Table 4, we first
create Girain, Gualid, Grest as discussed in Sec. 4.1. Then for each query structure, we use pre-order traversal starting
from the target node/answer to assign an entity/relation to each node/edge iteratively until we instantiate every anchor nodes
(the root of the query structure). After the instantiation of a query, we could perform post-order traversal to achieve the
answers of this query. And for validation/test queries, we explicitly filter out ones that do not exist non-trivial answers, i.e.,
they can be fully answered in G ,41,/Gya114. Different from the dataset in (Ren et al., 2020), where the maximum number
of test queries may exceed 5,000, we set a bar for the number of answers one query has, and additionally filter out unrealistic
queries with more than 100 answers. We list the average number of answers the new test queries have in Table 5 and the
number of training/validation/test queries in Table 6.

Dataset Entities | Relations | Training Edges | Validation Edges | Test Edges | Total Edges
FB15k 14,951 1,345 483,142 50,000 59,071 592,213
FB15k-237 | 14,505 237 272,115 17,526 20,438 310,079
NELL995 63,361 200 114,213 14,324 14,267 142,304

Table 4. Knowledge graph dataset statistics as well as training, validation and test edge splits.

Dataset 1p | 2p 3p 2i 3i ip pi 2u up 2in | 3in | inp | pin | pni
FB15k 1.7 119.6 | 244 | 80 | 52 | 183 | 125 | 189 | 23.8 | 159 | 146 | 19.8 | 21.6 | 16.9
FB15k-237 | 1.7 | 173 | 243 | 69 | 45 | 17.7 | 104 | 19.6 | 243 | 163 | 134 | 19.5 | 21.7 | 18.2
NELL995 1.6 | 149 | 175 | 57 1 6.0 | 174 | 119 | 149 | 19.0 | 129 | I1.1 | 129 | 16.0 | 13.0

Table 5. Average number of answers of test queries in our new dataset.

Queries Training Validation Test

Dataset 1p/2p/3p/2i/3i | 2in/3in/inp/pin/pni 1p others 1p others
FB15k 273,710 27,371 59,097 | 8,000 | 67,016 | 8,000
FB15k-237 149,689 14,968 20,101 | 5,000 | 22,812 | 5,000
NELL995 107,982 10,798 16,927 | 4,000 | 17,034 | 4,000

Table 6. Number of training, validation, and test queries generated for different query structures.

Generation of Queries with Negation: For the additional queries with negation, we derive 5 new query structures from the
9 EPFO structures. Specifically, as shown in Fig. 3, we only consider query structures with intersection for the derivation of
queries with negation. The reason is that queries with negation are only realistic if we take negation with an intersection
together. Consider the following example, where negation is not taken with intersection, “List all the entities on KG that is
not European countries.”, then both “apple” and “computer” will be the answers. However, realistic queries will be like
“List all the countries on KG that is not European countries.”, which requires an intersection operation. In this regard, We
modify one edge of the intersection to further incorporate negation, thus we derive 2in from 2¢, 3in from 3¢, inp from ip,
pin and pni from pi. Note that following the 9 EPFO structures, we also enforce that all queries with negation have at most
100 answers.

B. Experimental Details

We implement our code using Pytorch. We use the implementation of the two baselines GQE (Hamilton et al., 2018) and
Q2B (Renetal., 2020) in https://github.com/hyren/query2box. We finetune the hyperparameters for the three
methods including number of embedding dimensions from {200, 400, 800} and the learning rate from {le~*,5¢73, 1e 3},
batch size from {128, 256, 512}, and the negative sample size from {32, 64, 128}, the margin ~ from {20, 30, 40, 50, 60, 70}.
We list the hyperparameters of each model in the Table 7. Additionally, for our BETAE, we finetune the structure of the
probabilistic projection operator MLP,. and the attention module MLP,. .. For both modules, we implement a three-layer
MLP with 512 latent dimension and ReLU activation.

https://github.com/hyren/query2box

Beta Embeddings for Multi-Hop Logical Reasoning in Knowledge Graphs

embedding dim | learning rate | batch size | negative sample size | margin
GQE 800 0.0005 512 128 30
Q2B 400 0.0005 512 128 30
BETAE 400 0.0005 512 128 60

Table 7. Hyperparameters used for each method.

Dataset Model 1p 2p 3p 2i 3i pi ip 2u up avg
BETAE | 622 24.6 239 | 525 644 | 41.3 27.1 | 36.8 243 | 39.7
FB15k Q2B 67.1 199 135 | 531 644 | 388 249 | 334 157 | 36.7
GQE 546 153 108 | 39.7 514 | 276 19.1 | 22.1 11.6 | 28.0
BETAE | 382 103 9.7 | 273 409 | 21.1 112 | 11.7 9.2 | 20.0
FB15k-237 | Q2B 403 9.1 6.6 | 288 414 | 210 124 | 106 73 | 197
GQE 350 72 53 [233 346 | 165 107 | 82 57 | 163
BETAE | 52.5 127 11.0 | 361 46.8 | 23.8 139 | 11.7 8.6 | 24.1
NELL995 | Q2B 41.8 13.7 109 | 33.1 439 | 224 16.7 | 11.1 9.7 | 22.6
GQE 328 119 9.6 | 275 352 | 184 144 | 85 8.8 | 18.6

Table 8. MRR results (%) of BETAE, Q2B and GQE on answering EPFO (3, A, V) queries.

We run our method and two baselines for three times and report the average result with standard deviation.

Each single experiment is run on a single NVIDIA GeForce RTX 2080 TI GPU, and we run each method for 300k iterations.

C. Additional Experimental Results

We show in Table 8 the MRR results of the three methods on answering EPFO queries. Our methods show a significant
improvement over the two baselines in all three datasets.

We show in Table 9 the Pearson correlation coefficient between the learned embedding and the number of answers of queries.
Our method is better than the baseline Q2B in measuring the uncertainty of the queries.

Dataset Method 1p 2p 3p 2i 3i pi ip 2in 3in inp pin pni ‘
FB15k Q2B 0.075 0.217 0.258 | 0.285 0.226 | 0.245 0.133
BETAE | 0.216 0.357 0.383 | 0.386 0.299 | 0.311 0.312 | 0438 0.413 0.343 0360 0.442 |
FB15k-237 | Q2B 0.017 0.194 0.261 | 0.366 0.488 | 0.335 0.197
BETAE | 0.225 0.365 0.450 | 0.362 0.307 | 0.319 0.332 | 0464 0.409 0.390 0.361 0.484 \
NELL995 | Q2B 0.068 0.211 0.306 | 0.362 0.287 | 0.240 0.338
BETAE | 0.236 0.403 0.433 | 0.404 0.385 | 0.403 0.403 | 0.515 0.514 0.255 0.354 0455 \

Table 9. Pearson correlation coefficient between learned embedding (differential entropy for BETAE, box size for Q2B) and the number of
answers of queries (grouped by different query type). Ours achieve higher correlation coefficient.

