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Abstract

Recently, there is a surge of interest in combin-
ing deep learning models with reasoning in or-
der to handle more sophisticated learning tasks.
In many cases, a reasoning task can be solved
by an iterative algorithm. This algorithm is of-
ten unrolled, and used as a specialized layer in
the deep architecture, which can be trained end-
to-end with other neural components. Although
such hybrid deep architectures have led to many
empirical successes, theoretical understandings
of such architectures, especially the interplay be-
tween algorithm layers and other neural layers,
remains largely unexplored. In this paper, we take
an initial step toward an understanding of such
hybrid deep architectures by showing that proper-
ties of the algorithm layers, such as convergence,
stability and sensitivity, are intimately related to
the approximation and generalization abilities of
the end-to-end model. Furthermore, our analysis
matches nicely with experimental observations
under various conditions, suggesting that our the-
ory can provide useful guidelines for designing
deep architectures with reasoning layers.

1. Introduction

Many real world applications require perception and reason-
ing to work together to solve a problem. Perception refers
to the ability to understand and represent inputs, while rea-
soning refers to the ability to follow prescribed steps and
derive answers satisfying certain structures or constraints.
To tackle such sophisticated learning tasks, recently, there
is a surge of interests in combining deep perception models
with reasoning modules.

Typically, a reasoning module is stacked on top of a neu-
ral module, and treated as an additional layer of the overall
deep architecture; then all the parameters in the architec-
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Figure 1. Hybrid architecture

ture are optimized end-to-end with loss gradients (Fig 1).
Very often these reasoning modules can be implemented
as unrolled iterative algorithms, which can solve more so-
phisticated tasks with carefully designed and interpretable
operations. For instance, SATNet [1] integrated a satisfi-
ability solver into its deep model as a reasoning module;
E2Efold [2] used a constrained optimization algorithm on
top of a neural energy network to predict and reasoning
about RNA structures. [3] used optimal transport algorithm
as a reasoning module for learning to sort. Other algorithms
such as ADMM [4, 5], Langevin dynamics [6], inductive
logic programming [7], DP [8], k-means clustering [9], be-
lief propagation [10], power iterations [11] are also used as
differentiable reasoning modules in deep models for various
learning tasks. Thus in the reminder of the paper, we will
use reasoning layer and algorithm layer interchangeably.

While these previous works have demonstrated the effective-
ness of combining deep learning with reasoning, theoretical
understandings of such hybrid deep architectures remain
largely unexplored. For instance, what is the benefit of us-
ing a reasoning module based on unrolled algorithms com-
pared to generic architectures such as RNN? How exactly
will the reasoning module affect the generalization ability
of the deep architecture? For different algorithms which
can solve the same task, what are their differences when
used as reasoning modules in deep models? Despite the rich
literature on rigorous analysis of algorithm properties, there
is a paucity of work leveraging these analyses to formally
study the learning behavior of deep architectures containing
algorithm layers. This motivates us to ask the intriguing and
timely question of

How will the algorithm properties of a reasoning
layer affect the learning behavior of deep archi-
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tectures containing such layers?

In this paper, we provide a first step toward an answer to this
question by analyzing the approximation and generalization
abilities of such hybrid deep architectures. To the best our
knowledge, such analysis has not been done before and is
challenging in the sense that: 1) The analysis of certain
algorithm properties such as convergence can be complex
by itself; 2) Models based on highly structured iterative
algorithms have rarely been analyzed before; 3) The bound
needs to be sharp enough to match empirical observations.
In this new setting, the complexity of algorithm analysis
and generalization analysis intertwined together, making the
analysis even more challenging.

Summary of results. We find that standard Rademacher
complexity analysis, widely used for neural networks [12,
13, 14], becomes insufficient for explaining behaviors of
hybrid architectures. Thus we resort to a more refined local
Rademacher complexity analysis [15, 16], and find that:

o Relation to algorithm properties. Algorithm properties
such as convergence, stability and sensitivity all play impor-
tant roles in generalization ability of the hybrid architecture.
Generally speaking, an algorithm layer that is faster con-
verging, more stable and less sensitive will be able to better
approximate the joint perception and reasoning task, while
at the same time generalize better.

o Which algorithm? The tradeoff is that a faster converg-
ing algorithm has to be less stable [17]. Therefore, depend-
ing on the actual scenarios, the choice of a better algorithm
layer can be different. Our theorem reveals that when the
neural module is over- or under-parameterized, stability
of the algorithm layer can be more important than its con-
vergence; but when the neural module is about-the-right-
parameterized, a faster converging algorithm layer may give
a better generalization.

e What depth? With deeper algorithm layers, the repre-
sentation ability gets better, but the generalization becomes
worse if the neural module is over/under-parameterized.
Only when it has about-the-right complexity, deeper al-
gorithm layers can induce both better representation and
generalization.

o What if RNN? It has been shown that RNN/GNN can
also represent reasoning and iterative algorithms [18, 14].
We use RNN as an example in Appendix B to demonstrate
that these generic reasoning modules can also be analyzed
under our framework, which explains that RNN layers in-
duce a better representation power but a worse generaliza-
tion ability compared to traditional algorithm layers.

e Experiments. We conduct empirical experiments to val-
idate our theory and show that it matches nicely with ex-
perimental observations under various conditions. These
results suggest that our theory can provide useful practical
guidelines for designing deep architectures with reasoning
layers. Experimental results are presented in Appendix C.

Contributions and limitations. To the best of our knowl-
edge, this is the first result to quantitatively characterize the
effects of algorithm properties on the learning behavior of
hybrid deep architectures with reasoning layers. Our result
reveals an intriguing and previously unknown interplay and
tradeoff between algorithm convergence, stability and sensi-
tivity on the model generalization, and thus provides design
principles for deep architectures with reasoning layers. To
simplify analysis, our initial study is limited to a setting
where the reasoning module is an unconstrained optimiza-
tion algorithm and the neural module outputs a quadratic
energy function. However, our analysis framework can be
extended to more complicated case and the insights will
apply beyond our current setting.

Related theoretical works. Our analysis borrows proof
techniques for analyzing algorithm properties from the opti-
mization literature [17, 19] and for bounding Rademacher
complexity from the statistical learning literature [12, 15, 16,
20, 21], but our focus and results are new. More precisely,
the ‘leave-one-out’ stability of optimization algorithms has
been used to derive generalization bounds [22, 23, 24, 17,
25, 26]. However, all existing analyses are in the context
where the optimization algorithms are used to train and
select the model, while our analysis is based on a funda-
mentally different viewpoint where the algorithm itself is
unrolled and integrated as a layer in the deep model. Also,
existing works on the generalization of deep learning mainly
focus on generic neural architectures such as feed-forward
neural network, recurrent neural network, graph neural net-
work, etc [12, 13, 14]. Complexity of models based on
highly structured iterative algorithms and the relation to
algorithm properties have not been investigated. Further-
more, we are not aware of previous use of local Rademacher
complexity analysis in this context.

2. Setting: Optimization Algorithms as
Reasoning Modules

Very often reasoning can be accomplished by solving an
optimization problem defined by a neural perceptual mod-
ule. For instance, visual SUDOKU puzzle can be solved
using a neural module to perceive the digits and then us-
ing a quadratic optimization module to maximize a logic
satisfiability objective [1]. RNA folding problem can be
tackled using a neural energy model to capture pairwise
relations between RNA bases and a constrained optimiza-
tion module to minimize the energy with additional pairing
constraints to obtain a folding [2]. In a broader context,
MAML [27, 28] also has a neural module for joint initial-
ization and a reasoning module that performs optimization
steps for task-specific adaptation. Other examples include
[29, 6, 30, 31, 32, 33, 34].

As an initial attempt to analyze deep architectures with
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reasoning layers, we will restrict our analysis to a simple
case where Ey(x, y) in Fig.1 is quadratic in y. A reason is
that the analysis of advanced algorithms such as Nesterov
accelerated gradients will become very complex for general
cases. Similar problems occur in [17] which also restricts
the proof to quadratic objectives. Specifically:

Problem Setting: Consider a hybrid architecture where
the neural module is an energy function in form of
Ey((z,b),y) = 3y Qo(x)y + by, where Qq is a neu-
ral network that maps x to a matrix. Each energy can be
uniquely represented by (Qg(x), b), so we can write the
overall architecture as

fo.0(,b) :=B1g%(Qo(x), b). (1)

Given samples S, = {((21,b1),97), -, (X, bn), y)},
where the labels y* are given by the exact minimizer Opt
of the corresponding Q*, i.e., y* = Opt(Q*(x),b), the
learning problem is to find the best model fy ¢ from the
space F = {fp0 : (¢,60) € & x ©} by minimizing the
empirical loss function

ming, ,er = >0 Loo(xi,b;), where )
ls,0(x,b) := ||A1gg (Qs(x), b) — Opt(Q* (), b) |- Fur-
thermore, we assume:

e Both Qg and Q* map X to Sﬁzd where Szzd is the space
of symmetric positive definite (SPD) matrices with p and L
as its smallest and largest singular values. Thus the induced
energy function Fy will be p-strongly convex and L-smooth,
and the output of Opt is unique.

e The input (x, b) is a pair of random variables where x €
X CR™and b € B C R? Assume b has mean E[b] = 0
and variance X, = 071. Assume x and b are independent,
and their joint distribution follows a probability measure P.
Assume samples in .S, are drawn i.i.d. from P.

e Assume B is bounded, and let M =

SUP(Q b)es?xB [opt(Q, b)|l2-

Though this setting does not encompass the full complexity
of hybrid deep architectures, it already reveals interesting
connections between algorithm properties of the reasoning
module and the learning behaviors of hybrid architectures.

3. Properties of Algorithms

In this section, we formally define the algorithm properties
of the reasoning module Alg’;, under the problem setting
presented in Sec 2. After that, we compare the correspond-
ing properties of gradient descent, GD¥, and Nesterov’s

accelerated gradients, NAGK, as concrete examples.
(I) Convergence rate of an algorithm portrays how fast

the optimization error decreases as k grows. Formally,
we say Z—\lg’;5 has a convergence rate Cvg(k, ) if for

any Q € S b € B, [2195(Q,b) — 0pt(Q,b)||2 <
Cvg(k, 9)|219(Q. b) — 0Pt (Q, b)|2-

(II) Stability of an algorithm characterizes its robustness to
small perturbations in the optimization objective, which cor-
responds to the perturbation of () and b in the quadratic case.
For the purpose of this paper, we say an algorithm A1l g’;

is Stab(k, ¢)-stable if for any Q, Q" € Si" and b, b’ € B,
12195(Q, b) — 21k (Q",b)|l2 < Stab(k, $)||Q — Q'[l2 +
Stab(k, ¢)||b— b'||2, where ||Q — Q'||2 is the spectral norm
of the matrix Q — Q.

(III) Sensitivity characterizes the robustness to small pertur-
bations in the algorithm parameters ¢. We say the sensitiv-
ity of a1g} is Sens(k) if it holds for all Q € 873, b € B,
and ¢, ¢/ € @ that |[A1g§(Q,b) — Algf,(Q,b)ll2 <
Sens(k)||¢ — ¢'||2- This concept is referred in the deep
learning community to “parameter perturbation error” or
“sharpness” [35, 36, 37]. It has been used for deriving
generalization bounds of neural networks, both in the
Rademacher complexity framework [12] and PAC-Bayes
framework [38].

(IV) Stable region is the range ® of the parameters ¢ where
the algorithm output will remain bounded as k£ grows to
infinity, i.e., numerically stable. Only when the algorithms
operate in the stable region, the corresponding Cvg(k, ¢),
Stab(k, ¢) and Sens(k) will remain finite for all k. It is
usually very difficult to identity the exact stable region, but
a sufficient range can be provided.

GD and NAG. Now we will compare the above four algo-
rithm properties for gradient descent and Nesterov’s accel-
erated gradient method, both of which can be used to solve
the quadratic optimization in our problem setting. Let GD
and NAG, denote the algorithm update steps of GD and
NAG, where the hyperparameter ¢ corresponds to the step
size. Denote the results of k-step update of GD and NAG
by GD(’;(Q7 b) and NAG’(’;(Q7 b), respectively. The initializa-
tions in the algorithms are set to be zero vectors throughout
this paper. Then their algorithm properties are summarized
in Table 2 in Appendix D, which shows (i) Convergence:
NAG converges faster than GD. (ii) Stability: However, as k
grows, NAG is less stable than GD for a fixed k, in contrast
to their convergence behaviors. This is pointed out in [17],
which proves that a faster converging algorithm has to be
less stable. (iii) Sensitivity: The sensitivity behaves similar
to the convergence, where NAG is less sensitive to step-size
perturbation than GD. Also, the sensitivity of both algo-
rithms gets smaller as k grows larger. (iv): Stable region:
The stable region of GD is larger than that of NAG. It means
a larger step size is allowable for GD that will not lead to
exploding outputs even if k is large. Note that all the other
algorithm properties are based on the assumption that ¢ is
in the stable region ®. Furthermore, as k& — oo, the space
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Theorem 3.1. Assume the problem setting in Sec 2. Then we have for any t > 0, it holds true that

ER,,£%2¢(r) <\V/2dn~3 Stab (k) (\/(Cvg(k')M +/1)2C1(n) + Ca(n,t) + Cs(n,t) + 4> + Sens(k)Bs, (3)

where By = §supy ycq |¢ — ¢'l|2, Stab(k) = sup Stab(k, ¢), Cvg(k) = sup,, Cvg(k, ¢), and C; are constants monotone
in the covering number N (ﬁ7 lo, L) of Lo with radius ﬁ and Lo, norm. We refer their exact definitions to Appendix F.

{Alg’; : ¢ € @} will finally shrink to a single function,
which is the exact minimizer {Opt }.

How will the algorithm properties affect the learning behav-
ior of deep architecture with reasoning layers? We provide
the approximation ability analysis in Appendix A and the
generalization analysis in the next section.

4. Generalization Ability

How will algorithm properties affect the generalization
ability of deep architectures with reasoning layers? We
are interested in the generalization gap between the ex-
pected loss and empirical loss, Ply g = Egplyo(z,b)
and Plyo = %E?:1€¢79(wi,bi), respectively, where
P, is the empirical probability measure induced by the
samples S,,. Let {r = {ly9 : ¢ € ®,0 € O} be
the function space of losses of the models. The gener-
alization gap, Ply ¢ — P,{4¢, can be bounded by the
Rademacher complexity, ER, /7, which is defined as
the expectation of the empirical Rademacher complexity,
R.lr = E, sup¢€¢’(,€@% Sor oilye(x, b;), where
{0} are n independent Rademacher random variables
uniformly distributed over {#1}. Generalization bounds
derived from Rademacher complexity have been studied in
many works [39, 40, 41].

Main Results: [Theorem 3.1]. More specifically, the lo-
cal Rademacher complexity of ¢z at level r is defined
as ER,0%2¢(r) where £'2°(r) == {lyp : ¢ € ®,0 €
o, Pﬁiﬁ < r}. This notion is less general than the one
defined in [15, 16] but is sufficient for our purpose. Here we
also define a losses function space (g := {||Q9 — Q|| :
6 € ©} for the neural module (Qy. With these definitions,
Theorem 3.1 shows that the local Rademacher complexity
of the hybrid architecture is intimately related to all aspects
of algorithm properties, namely convergence, stability and
sensitivity, and there is an intriguing trade-off.

Trade-offs between convergence, stability and sensitiv-
ity. Generally speaking, the algorithm convergence Cvg(k)
and sensitivity Sens(k) have similar behavior, but Stab(k)
behaves opposite to them. See illustrations in Fig 2. There-
fore, the way these three quantities interplay in Theorem 3.1
introduces an intriguing trade-off among them, suggesting
in different regime, one may see different generalization
behavior. More specially, depending on the parameteriza-
tion of @y, the coefficients C, Cs, and C3 in Eq. 3 may

have different scale, making the local Rademacher com-
plexity bound dominated by different algorithm properties.
Since the coefficients C; are monotonely increasing in the
covering number of £o, we expect that: (i) When @y is over-
parameterized, the covering number of £o becomes large, so
as the three coefficients. Large C; will reduce the effect of
Cvg(k) and make Eq. 3 dominated by Stab(k); (ii) Inversely,
when @y is under-parameterized, the three coefficients get
small, but they still reduce the effect of Cvg(k) given the
constant 4 in Eq. 3, again making it dominated by Stab(k);
(iii) When @y has about-the-right parameterization, we
can expect Cvg(k) to play critical roles in Eq. 3 which will
then behave similar to the product Stab(k)Cvg(k), as illus-
trated schematically in Fig 2. We experimentally validate
these implications in Sec C.

Conv(k) or Sens(k) Stab(k) Conv(k) * Stab(k)
— GD —— GD — GD
—— NAG —— NAG —— NAG

\

Figure 2. Overall trend of algorithm properties.

Trade-off of the depth. Combining the above implications
with the approximation ability analysis in Sec A, we can
see that in the above-mentioned cases (i) and (ii), deeper
algorithm layers will lead to better approximation accuracy
but worse generalization. Only in the ideal case (iii), a
deeper reasoning module can induce both better representa-
tion and generalization abilities. This result provides prac-
tical guidelines for some recently proposed infinite-depth
models [42, 43].

5. Conclusion and Discussion

In this paper, we take an initial step toward the theoretical
understanding of deep architectures with reasoning layers.
Our theorem indicates intriguing relation between algorithm
properties of the reasoning module and the approximation
and generalization of the hybrid architecture, which in turns
provide practical guideline for designing reasoning layers.
The assumptions we made in the problem setting are only for
avoiding the non-uniqueness of the reasoning solution and
the instability of the mapping from the reasoning solution
to the neural module. The assumptions could be relaxed if
we can involve other techniques to resolve these issues.
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A. Approximation Ability

How will the algorithm properties affect the approximation ability of deep architecture with reasoning layers? Given a model
space F := {Algf; (Qo(x),b) : ¢ € ®,0 € O}, we are interested in its approximation ability to functions of the form
Opt (Q*(x), b). More specifically, we define the loss {4 ¢(x, b) := HAlg’j) (Qo(x),b) — Opt (Q*(x), b)||2, and measure
the approximation ability by infyca peo Supg-cg- Pl g, where Q := {X' x B SI‘iXLd} and Ply g = Eg p[ly.0(x, b)].
Intuitively, using a faster converging algorithm, the model A1 g’; could represent the reasoning-task structure, Opt, better
and improve the overall approximation ability. Indeed we can prove the following lemma confirming this intuition.

Lemma A.1. (Faster Convergence = Better Approximation Ability). Assume the problem setting in Sec 2. The
approximation ability can be bounded by two terms:

inf sup Plyg <opu 2 infsup P||Qe(x) — Q* ()| r +M inf Cvg(k, ).
®,0 Q*€0* 0 Q* ped
—_————

approximation ability of the neural module best convergence

With Lemma A.1, we conclude that: A faster converging algorithm can define a model with better approximation ability.
For example, for a fixed k and @@y, NAG converges faster than GD, so NAG’; can approximate Opt more accurately than

GD¥, which is experimentally validated in Sec C.

Similarly, we can also reverse the reasoning, and ask the question that, given two hydrid architectures with the same
approximation error, which architecture has a smaller error in representing the energy function Q*? We show that this error
is also intimately related to the convergence of the algorithm.

Lemma A.2. (Faster Convergence = Better Representation of Q*). Assume the problem setting in Sec 2. V¢ € ®,0 €
0,Q* € Q" ={X x B+ SiXLd , it holds true that

Pl g=c = P|Qo— Q"|% <0, 2L (Ve + M - Cvg(k, 9))*. 4)

Lemma A.2 implies the benefit of using an algorithmic layer that aligns with the reasoning-task structure. Here the task
structure is represented by Opt, the minimizer, and convergence measures how well A1 g’; is aligned with Opt. Lemma A.2
essentially indicates that if the structure of a reasoning module can better align with the task structure, then it can better
constrain the search space of the underlying neural module (), making it easier to learn, and further lead to better sample
complexity, which we will explain more in the next section.

As a concrete example for Lemma A.2, if GDZ; (Qe, ) and NAG’; (Qs, -) achieve the same accuracy for approximating
opt (Q*, ), then the neural module Qy in NAG’;5 (Qg, -) will have a better accuracy for approximating Q* than the Qg in

GD’(; (Qo, ). In other words, a faster converging algorithm imposes more constraints on the energy function g, making it
approach Q* faster.

B. Pros and Cons for RNN as a Reasoning Layer

It has been shown that RNN (or GNN) can represent reasoning and iterative algorithms over structures [18, 14]. For example,
it is proposed to use RNN to learn an optimization algorithm [18] where the update steps in each iteration are given by the
operations in an RNN cell

Y1 < RNNcell (Q,b,yy) := Vo (Who (WE1 o W20 (Wy, + Wigy))) - 5)

In the above equation, we take a specific example where the RNNcell is a multi-layer perception (MLP) with activations
o = RELU that takes y;, and the gradient g; = Qy; + b as inputs. Suppose we denote RNN’(Z as a recurrent neural network
that has & unrolled RNN cells and view it as a neural algorithm. Can our analysis framework also be used to understand
RNN’;5 and how will its behavior compare with other more interpretable algorithm layers such as GD’(‘Z; and NAG’(Z?

We view RNN? as an algorithm and summarize its algorithm properties in Table 1. Assume ¢ = {V, W}, W3, W%}

is in a stable region ¢4 := supg ||V [|2||W{ + W3 Q|2 H1L=2 [W!||2 < 1, so that the operations in RNNcel1 are strictly
contractive, i.e., || Yr+1 — Ykll2 < ||y — Yr—1|l2- In this case, the stability and sensitivity of RNN’(; is guaranteed to be
bounded. Table 1 only shows the best-case convergence, due to a fundamental disadvantage of RNN compared to GD and
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NAG. For an arbitrarily fixed ¢ in the stable region, the outputs of RNN’;5 with different k£ can form a convergent sequence,
which could coincide with the outputs of GD:; or NAG’; with suitable choices of ¢. However, in general the outputs of RuN%
may not converge to the minimizer Opt. In contrast, GD} and NAG] has the worst-case convergence guarantee. This property
also allows their sensitivities to decrease to 0 as k grows. In generalization analysis, the worst-case matters more, so GD and

NAG are advantageous.

The advantage of RNN is its expressiveness, especially given the universal

approximation ability of MLP in the RNNcell. Using existing algorithm as a Table 1. Properties of RNNg. (Details are given

. : . in Appendix G.)
reasoning layer restricts the deep model to perform a specific type of reason-
ing. When the needed type of reasoning is unknown or beyond what existing Stable region ¢ cp <1
algorithm is capable of, RNN has the potential to learn new reasoning given Stab(k, ¢) o1 - C’;)
sufficient data. Sens(k) O(1 — (inf cy)¥)

ming Cvg(k, ) | O(p*) with p < 1

C. Experimental Validation

Our experiments aim to validate our theoretical prediction with computational simulations, rather than obtaining state-of-
the-art results. We hope the theory together with these experiments can lead to practical guidelines for designing deep
architectures with reasoning layers.

The experiments follow the problem setting in Sec 2. 10000 pairs of (x, b) are uniformly sampled and used as the overall
dataset. During training, n samples are randomly drawn from these 10000 data points as the training set. Each Q* () is
produced by a rotation matrix and a vector of eigenvalues parameterized by a randomly fixed 2-layer dense neural network
with hidden dimension 3. Then the labels are generated according to y = Opt (Q*(x), b). We train the model A1 gg(Qg, )
on S, using the loss in Eq. 2?. Q¢ has the same overall architecture as QQ* but the hidden dimension could vary. Note that
in all figures, each k corresponds to an independently trained model with k iterations in the algorithm layer, instead of
the sequential outputs of a single model. Each model is trained by ADAM and SGD with learning rate grid-searched from
[le-2,5e-3,1e-3,5¢e-4,1e-4], and only the best result is reported. Furthermore, error bars are produced by 20 independent
instantiations of the experiments. See Appendix H for more details.

dim=16
Approximation ability. To validate Lemma A.l, we compare GD’;ﬁ (Qo, ) and g B — GD
NAGY (Qp, -) in terms of approximation accuracy. For various hidden sizes of Qy, % 20 —T—hAG
the results are similar, so we report one representative in Fig 3. The approxima- £
tion accuracy aligns with the convergence of the algorithms, showing that faster g—
converging algorithm can induce better approximation ability. oo ———
k

Faster convergence=-better (Jy. We report the error of the neural module @y
in Fig 4. Note that Alg’;(Qg, -) is trained end-to-end, without supervision on Figure 3. Approximation error.
Q. In Fig 4, the error of (Qy decreases as k grows, in a rate similar to algorithm

convergence. This validates the implication of Lemma A.2 that, when Alg’; is closer to Opt, it can help the underlying
neural module @y to get closer to Q™.

dim=16 o dim=32 dim=0 dim=16 dim=32
04 — GD — GD =——GD= |20 ——GDH , — GD_
03 —— NAG | 03 — NAG 1o —— NAG |15 —— NAG — NAG
02 0 0s 10 >~
01 0.5 1
0.0 0.0
Figure 4. P||Qo — Q*||% Figure 5. Generalization gap
Generalization gap. In Fig 5, we report the generalization gaps, with _ % o]
. . . . o — GD — GD
hidden sizes of Yy being 0, 16, and 32, which corresponds to the three £ Z — NAG é 04— NAG
cases (ii), (iii), and (i) discussed under Theorem 3.1, respectively. 2, — RNN | 8 20 :M
Comparing Fig 5 to Fig 2, we can see that the experimental results 52 & 101
. . . . . = c
match very well with the theoretical implications. ° S T e e
k k

RNN. As discussed in Sec B, RNN can be viewed as neural algo-

rithms. To have a cleaner comparison, we report their behaviors under Figure 6. Algorithm layers vs RNN.

the ‘learning to optimize’ senario where the objectives (@), b) are given. Fig 6 shows that RNN has a better representation
power but worse generalization ability.
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D. Proof of Algorithm Properties

In this section, we study several important properties of gradient descent algorithm (GD) and Nesterov’s accelerated gradient
algorithm (NAG), which have been summarized in Table 2. To simplify the presentation, we shall focus on quadratic
minimization problems as in Section 2 and estimate the sharp dependence on the iteration number .

Table 2. algorithm properties comparison between GD and NAG. For simplicity, only the order in & is presented. Complete statements
with detailed coefficients and proofs are given in Appendix D.

Alg | Cvg(k, ¢) Stab(k, ¢) Sens(k) Stable region @

ef | O(l—9¢w)*)  O@1—-(1—ow*) O(k(L—-cow) ') e, 72g]
NAGE | O (k(1— Vo)) O(1—-Q1—-Veu) O (K1 - /eop)*) [co, ﬁ]

More precisely, in the subsequent analysis, we shall fix the constants L > p > 0 and assume the objective function is
in the function class Q,, 1, which contains all p-strongly convex and L-smooth quadratic functions on R?. Then, for
any given f € Q, r, the eigenvalue decomposition enables us to represent the Hessian matrix of f, denoted by (), as
Q = UAUT, where A is a diagonal matrix comprising of the eigenvalues (\;)%_; of @ sorted in ascending order, i.e.,
<A <...< A < L,and U € R¥™ is an orthogonal matrix whose columns constitute an orthonormal basis of
corresponding eigenvectors of (). Moreover, we shall denote by I; the d x d identity matrix, and by || A||2 the spectral norm
of a given matrix A € R?*,

We start with the GD algorithm. Let f € Q, 1, s > 0 be the stepsize, and z¢ € R4 be the initial guess. For each
k € NU {0}, we denote by x4 the k + 1-th iterate generated by the following recursive formula (cf. the output yy 1 of
GDg in Section 3):

Tpr1 = xp — SV f(xg). (6)

The following theorem establishes the convergence of Eq. 6 as k tends to infinity, and the Lipschitz dependence of the iterates
(2 )ken in terms of the stepsize s (i.e., the sensitivity of GD). Similar results can be established for general p-strongly
convex and L-smooth objective functions.

Theorem D.1. Let f € Q,, 1, admit the minimiser z* € R%, zy € R? and for each s > 0 let (73 )kenuqoy be the iterates
generated by Eq. 6 with stepsize s. Then we have for all k € N, ¢ > 0, s,t € [co, #_%L] that

2 = 2*[l2 < (1= sp)* 2o — ™|z |2}, — @]z < Lh(1 = cop)* [t — s[||zo — 2*[|o- O]
Proof. Let Q be the Hessian matrix of f and ();)%_, be the eigenvalues of (). By using the fact that V f(z*) = 0 and Eq. 6,
we can obtain for all K € NU {0} and s > 0 that 2§ — 2* = (I; — sQ)(z;_, — 2*) = (Ig — sQ)*(zo — z*).

Since the spectral norm of a matrix is invariant under orthogonal transformations, we have for all s € [cy, MJ%L] that

ILg — sQll2 = |Ig — sAl|2 = max |1 — s\;| = max(]1 — su|, |1 — sL])
=t ®)
<1-—spu.

Hence, for any given k € N U {0}, the inequality that ||z§ — 2*||2 < (||[Is — sQ||2)*||xo — 2*||2 leads us to the desired
estimate for (||z] — z* Hg)keNu{O}.

Now lett, s € [co, H%] be given, by using the fact that %xz = k(Iy — sQ)*~1Q(xo — x*) for all s > 0, we can deduce

from the mean value theorem that

||xz—x2|2s( sup ||;ix2|2)|t—s

r€(co, 3¢)

< ( sup  k(ILa = rQll2)" M Qllzllzo — w*llz)lt — |

7'6(007”%)

k-1
<k ( sup ||]Id—rQ||2> L|t — sl|||zo — "2,

re[co,ﬁ]
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which along with Eq. 8 finishes the proof of the desired sensitivity estimate. O

The next theorem shows that Eq. 6 with stepsize s € (0, ﬁ%] is Lipschitz stable in terms of the perturbations of f. In
particular, for a quadratic function f € Q,, 1, we shall establish the Lipschitz stability with respect to the perturbations in
the parameters of f. For notational simplicity, we assume xy = 0 as in Section 3, but it is straightforward to extend the
results to an arbitrary initial guess xo € R%.

Theorem D.2. Let zg = 0, for eachi € {1,2} let f; € Q,, 1, admit the minimizer x** € R® and satisfy V f;(z) = Qiz +b;
for a symmetric matrix Q; € R4 and b; € RY, for eachi € {1,2}, s > 0 let (2} i) kenu{oy be the iterates generated by

Eq. 6 with f = f; and stepsize s, and let M = min(||z* |2, ||[2*2||2). Then we have for all k € N, ¢o > 0, s € [co, MJ%L]
that:

o7y = 2goll2 < | = (1= (1= sp)") + sk(1 = sp0)" " | M[|Q1 = Qall2

==

+ = (1= (1= s50)")[lbr — ba2.

==

Proof. Let us assume without loss of generality that ||z*2||; < ||2*!||2 and ¢y < ;H—LL We write 0z, = xf ; — xj, , for
each k € NU {0}. Then, by using Eq. 6 and the fact that V f1(z) — V f1(y) = Q1(z — y) for all z, y € R?, we can deduce
that dzo = 0 and for all k € NU {0} that

k
a1 = (Ig — sQ1)0k + e = > _(Ia — sQ1) ex—i,

=0

where e, = —s(V fi1 — V f2)(x} ,) foreach k € N U {0}. Note that it holds for all £ € NU {0} that

lexll2 < sl[(Vfi = V2)(@h0)ll2 < 5 ([|Q2 — Qall2llz oll2 + [1br — b2l|2)
< 5(1Q2 — Qall2(l2* |2 + 23 5 — %2 [|2) + [[br — b22)
< 5(1Q2 — Qall2(ll2*2[l2 + (1 = sp)*[|lwo — 22[|2) + [|b1 — bal2),

where we have applied Theorem D.1 for the last inequality. Thus for each & € N, we can obtain from Eq. 8 and xy = 0 that

k—1
[6zk]l2 < > (1 — sQ1ll2)"[lex—1—l2
=0
k—1 ) ]
<Y (X —sp)'s[(1+ (1= sp)* ) 2*22]|Q2 — Q2ll2 + [1br — b2 2]
1=0

1 — . * *
= [M(l — (L= sp)*) + sk(1 — sp)" 1| min([la™ 2, [l2*2]|2)|Q2 — Q22
+ = (1= (1= s)")[|b1 — ba]fa.

which leads to the desired conclusion due to the fact that M = min(||z*|2, [|[2*2||2). O

We now proceed to investigate similar properties of the NAG algorithm, whose proofs are more involved due to the fact that
NAG is a multi-step method.

Recall that for any given f € Q, r, initial guess xo € R? and stepsize s > 0, the NAG algorithm generates iterates
(Tk, Y ) kenu{oy as follows: yo = xo and for each & € NU {0},

1—/us
Thp1 = Y& — SVI(UR),  Yrs1 = Trg1 + T\/ﬁ(ﬂflﬁ-l — ). )

Note that 241, yi+1 are denoted by yr+1, zx+1, respectively, in Section 3.



Understanding Deep Learning with Reasoning Layer

We first introduce the following matrix Rnag,s for Eq. 9 for any given function f € Q,, 1, and stepsize s € [0, ﬁ]:
14+ 6s)(Ig—s —Bs(Ig — s
Fangs o (5l = 5Q) —By(la = 5Q) (10)
Iq 0
where 8, = 7 +g and () is the Hessian matrix of f. The following lemma establishes an upper bound of the spectral norm

of the k-th power of Rnag,s, Which extends [17, Lemma 22] to block matrices, a wider range of stepsize (s is allowed to be
larger than 1/L) and a momentum parameter /3, depending on the stepsize s.

LemmaD.1. Let f € Q,, 1, s € (0, 3L+u] Bs = 1;\/@ and Ryug,s be defined as in Eq. 10. Then we have for all k € N
that | Riyg o/l < 20+ 1)(1 — /759)".

Proof. Let Q = UAUT be the eigenvalue decomposition of the Hessian matrix @ of f, where A is a diagonal matrix
comprising of the corresponding eigenvalues of () sorted in ascending order, i.e., 0 < u < A\; < ... < Ay < L. Then we

have that
R (U 0\ [(1+8s)(Ig—sA) —Bs(Ig—sA)\ (UT 0
NAGs = 0 U I 0 o uT)’

which together with the facts that any permutation matrix is orthogonal, and the spectral norm of a matrix is invariant under
orthogonal transformations, gives us the identity that: for all k£ € N,

k
(<1+,@s>§d—sA> —M%‘SA)) = max |52 an

i=1,...n
2

||R1’3AG,S||2 = H

where T} ; = ((Hﬁs)g’”‘i) ’55(10’5)‘1')) foralli=1,...,d.

Now let s € (0, S%Jm] andi =1,...,dbe fixed. If 1 — s\; > 0, by using [? ]JLemma 22]chen2018stability (with o = p,
B=1/s,h=1—s)\; and k = 8/ = 1/(us)), we can obtain that

k/2
ITE N2 < 2(k +1) <1\ﬁ(1—,us)> <2k +1)(1 — /ps)k.

We then discuss the case where 1 — sA; < 0. Let us write Ts’fi = (‘é: Z’; ) for each k € NU {0}, then we have forall k € N
that

ap = (14 Bs)(1 = sAi)ar—1 — Bs(1 — sA\i)cp—1, cx = ap_1,
b = (1+ Bs)(1 — sAi)br—1 — Bs(1 — sA\i)dg—1, di = bp_1,
with a1 = (14 85)(1 — s\;), by = —Bs(1 — sA;), c1 = 1 and d; = 0. Since the conditions 1 — s\; < 0 and s <

imply that \; > % > 3%% > i, we see the discriminant of the characteristic polynomial satisfies that

3L+M

A= (14 B)%1 = s\)? —4B,(1 — s)\;) = ms(u —\) >0,

lo =—

which implies that there exist l1,12,13,l4 € R such that it holds for all & € N U {0} that a; = llT_’f_H + lngH and
b = a5 4 Lyt with 7y = (1+Bs)(1—2sAi)i\/Z I = 1 =

— 9’ 9’ 7—+77—77
letting p; := max(|74|, |7—|), we have that |as| = |Z?:0 T < (k+1)pk and |by,| = \(—un)Zf STJ’f 1=ipd \ <
kpk+t for all k € N U {0}.

———and Iy = —
T4 —T— T+

T+T’

Now we claim that the conditions 1 — sA; < 0and 0 < s < 3L+ imply the estimate that p; < 1 — ,/us < 1. In fact,

< 1, which implies that 85, = — Vs > 0. Hence we can deduce from

the inequality s < 3 L v gives us that us < 1 s

3L+
1 — s\ < 0that VA > (14 ) (s\ — 1) and

sAi — L+ /(sh — D)s(\; — ) < sL—1+4+/(sL —1)s(L — p)
1+ /s - L+ /s '

74| < | <




Understanding Deep Learning with Reasoning Layer

Note that 2 — (u + L)s > 2 — 4?%71? > (), we see that

pi <1— s = |7_| <1—/is <= sL—1++/(sL—1)s(L—p) <1—pus
= (sL—1)s(L—p) < (2~ (n+L)s)°
— (us—1)((BL+pu)s—4) > 0.

Therefore, we have that max(|ag|, |bx|, |cx|, |dx|) < (k4 1)(1 — \/is)*, which, along with the relationship between the
spectral norm and Frobenius norm, gives us that |77, [l < |TF,[|r < 2(k + 1)(1 — /zz5)¥, and finishes the proof of the
desired estimate for the case with 1 — s\; < 0. O]

As an important consequence of Lemma D. 1, we now obtain the following upper bound of the error (||zx — z*||2)ken for

any given objective function f € Q,, 1, and stepsize s € (0, ﬁ]

Theorem D.3. Let f € Q,, 1, admit the minimizer x* € R, z9 € RY, s € (0
generated by Eq. 9 with stepsize s. Then we have for all k € N U {0} that

4 .
, m} and (3, yj)kenu{o} be the iterates

27y — 113+ llog — 2713 < 8(1+k)*(1 = /as)**|lwo — 2|3

Proof. For any f € Q, 1, and s € (0, ﬁ], by letting 8, = 1;\/‘/222, we can rewrite Eq. 9 as follows: 2§ = o,
x5 =x9— sV f(xg)andforall k € N,
.I‘Z+1 = (1 + 66)xi - Bsxk—l - Svf((l + Bé)xz - /Bsxk—l)7 (12)

which together with the fact that V f (z*) = 0 shows that

S * S * S *
T =2\ _po (T ) g T —x
z — x* S\ — a2t NAG.s \ g8 — o*

where Rnag, s is defined as in Eq. 10. Hence by using x5 = x¢ — sV f(x() and Theorem D.1, we can obtain that

k
25 s1 = 213 + ok — 2|3 < | Rag sl3(l25 — 2713 + 2§ — 2™[13)

k 2 2
< ||RNAG,5||22||$O — |3,
which together with Lemma D.1 leads to the desired convergence result. O

Remark D.1. It is well-known that for a general p-strongly convex and L-smooth objective function f, one can employ
a Lyapunov argument and establish that the iterates obtained by Eq. 9 with stepsize s € [0, %] satisfy the estimate that
|zn — 2*||3 < %(1 — /1i5)*||zo — z*||3. Here by taking advantage of the affine structure of V f, we have obtained a
sharper estimate of the convergence rate for a wider range of stepsize s € (0, ﬁ]

We also would like to emphasize that the upper bound in Theorem D.3 is tight, in the sense that the additional quadratic
dependence on k in the error estimate is inevitable. In fact, one can derive a closed-form expression of R{fl AG,s and show that,
for an index ¢ such that the eigenvalue \; is sufficiently close to p, the squared error for that component is of the magnitude

O(k /75 + 1)2(1 — /1)),

We then proceed to analyze the sensitivity of Eq. 9 with respect to the stepsize. The following theorem shows that the
iterates (zx, Y& )kenugfoy generated by Eq. 9 depend Lipschitz continuously on the stepsize s.

Theorem D.4. Let f € Q,, 1 admit the minimiser z* € RY, xq € R, and for each s € (0, ﬁ] let (x3,, Y} ) kenu{oy be
the iterates generated by Eq. 9 with stepsize s. Then we have for allk € N, ¢o > 0 and t, s € [co, ﬁ] that:

4
ok~ aill < (22004 1)+ ghte+ 1(6+3) (/2 +20) ) (0= VA sllzo = o”]
0
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Proof. Throughout this proof we assume without loss of generality that ¢y < s < t < =+—. Let ) be the Hessian matrix

3L+p
of f, for each r € [cy, ﬁ] let 8, = i;\/\/z::, and for each k € NU {0} let dzy, = ! — x; . Then we can deduce from

Eq. 12 that 0z¢ = 0, dx1 = —(t — s)V f(x0) and for all k € N that

xz-&-l - $Z+1 =[1+ Bt)x}; - 5t$§c—1 —tVf((1+ Bt)wi - 5@2—1)]
— A+ Bs)xg — Bszi—y — sVF((1+ Bs)xf, — Bswi—1)],

which together with the fact that V f(z) — V f(y) = Q(x — y) for all 7,y € R? shows that

5xk+1 . oxy, €k
(o) = e (s, ) = (5)

with Rinag,: defined as in Eq. 10 and the following residual term

e = [(1+ By — Brai_y — V(1 + Br)ay — Beai_y)]
— [T+ Bs)wy — Bswi_q — sVF((L+ Bs)wy — Bswi_q)]-

Hence we can obtain by induction that: for all k¥ € N,
ox ox - e
k i k—i
( 5$:1> = Rliac.s (M(l)) + ;RNAGJ ( o ) . (13)

Now the facts that V f(z*) = 0 and V2f = Q gives us that

er = (Br = Bs) (g — a—1) =tV (1 + Br)ag — Braf—1) + sVI((1+ Bs)ag — Bexf1)
= (B = B) ((wk — 2%) — (24 — 2")) —tQ((1 + Bi) (w} — 2%) — Be(f_y — 7))
+5Q((1+ B) (@i — 27) — Bul@iy — 27))
= [(Be = Bs) = (t+ 1B — 5 — 8:)Q (wf, — 2™) — [(Be — Bs) — (tBr — 5B5)Q] (wf—y — 7).

Note that one can easily verify that the function g1 (r) = 3, is \/ 1/ co-Lipschitz on [cy, ﬁ], and the function g5 (1) = 70,

, ﬁ] Moreover, the fact that f € Q,, , implies that ||Q||2 < L. Thus we can obtain from Theorem

lewl < (/2 +20) = lleg =l + (£ -+ £ ) 1t =sllog s ="l
Co co
T — - -
= ([ ”L) 1t = sly/2(lz — 213+ 25y — 2*113)

< (\/ZJr 2L> It — s|4(1 + k)(1 — /ps)¥||zo — 2*| 2.

is 1-Lipschitz on [0
D.3 that

This, along with Eq. 13, Lemma D.1 and s < ¢, gives us that

k-1

) |
Iz l3 + 192el3 < 1 BSag lllldzrllz + 3 [ Riiag o llzllen—ilz
=0

< 2(1+ k)(L - V)|t - s|Lllzo — a3

k—1
1)(1 — ‘ L —s —i)(1 = /ps)k |z — 2
#3200+ Vi (\/;HL)It 401+ & — 8)(1 — V) o — 2

= (22040 + ghte+ 16 +5) (/£ 22 )t = sl(1 = Voo - o7l

which finishes the proof of the desired estimate due to the fact that s > cg. O
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The next theorem is an an analog of Theorem D.2 for the NAC scheme Eq. 9, which shows that the outputs of Eq. 9 with
stepsize s € (0, ﬁ] is Lipschitz stable with respect to the perturbations of the parameters in f.

Theorem D.5. Let zo = 0, for eachi € {1,2} let f; € Q,, 1, admit the minimizer z** € R® and satisfy V f;(z) = Q;x +b;
for a symmetric matrix Q; € R and b; € R, for eachi € {1,2}, s > 0 let (xi i )kenufoy be the iterates generated by
Eq. 9 with f = f; and stepsize s, and let M = min(||x*!||2, |2*2||2). Then we have for all k € N, s € [cq, 3L+ | that:
8(k —1)k(k+4)

3 (1= /ps) 1 M[|Q1 — Q22

s s 2 _
23,1 — 2k 2llz < m (1= =vps)" ") +s
2
t (1= (1= y/8)*) [[b1 = ba]2.

Proof. Let us assume without loss of generality that ||2*2|| < ||*!||2. We first fix an arbitrary s € [cy, ﬁ} and write
dxy = w3 — ¥ , foreach k € NU {0}. Then, by using Eq. 12 and the fact that V f1(z) — V f1(y) = Q1(z — y) for all
z,y € R, we can deduce that §z¢ = 0, 6z1 = —s(V f; — Vfa)(z0) and for all k € N,

(5.’1} 61‘ e 6$ e
< 521) = e (&:ki) N ((f ) :R5A07s< 1) ZRNAGS ( 0 J)» (14)

where Rnag,s is defined as in Eq. 10 (with @) = 1) and the residual term ey, is given by
e = —s(Vf1 = Vo) (1 + Bs)a} o — Bsi_12) VEEN.
Note that, by using Theorem D.3 and the inequality that x +y < \/W forall z,y € R, we have for each k € N that
lerllz = sll(@1 — @2)((1 + Bs)ak 2 — Bswi_12) + (b1 — b2)ll2
< s[|Q1 — Qll2(llz™ 2|2 + 2|23 » — 30*’2\\2 + HJC‘Z 12— 2%|2) + sllbr = b2
< 5Q1 = Qall2(la*?[l2 + 2|z — 2 = 2"2[|2) + sl|by — b2
< s[Q1 — Q2l2(lla™?|l2 + 8(1 + k) (1 — /ps)" IIwo = 272[|2) + s][by — ba]2.

Hence we can obtain from Eq. 14, Lemma D.1 and g = 0 that

k—1
\/H5xk+1\|§ +[18zal3 < 20k + 1)(1 = Vas)*[l6z1 |2 + D 205 + 1)(L = Vi) fler—jlle
7=0

k—1

2(k + 1)(1 — /ms)*sl|by — balla + > 205 + 1)(1 — y/i5)? [s][b1 — ba]2
3=0

+5]Q1 = Q2ll2(1 +8(1 + k — j) (1 — /s)* ) |J2*?| 2]

k

k—1
<263+ D~ VY lIbr — balla 425 [+ (1~ v
j=0

§=0

+8(j + D)L+ k = j)(1 = s)* Q1 — Q2|2 min([Ja™* |2, [J2*2]|2)-
Letp =1— ,/us € [0,1), then we can easily show for each k € NU {0} that (1 — )Zf G+ = Zf 0P — prtL

. (- )kt
which implies that Z?:o(j“‘l)(l_«/ﬂs)j < % Moreover, we have that ZJ O(]+1)(1+k Jj) = W
for all £ € N. Thus we can simplify the above estimate and deduce for each k& € N that
2 2
okl < 2 (1 (1= VIS o = bl |2 (1 1= Vi)

8k(k+1)(k+5
DD 1 |1 - Qallmina™ o a1

Moreover, the condition that s < 77— < - implies that [|0z1[2 = s[|br — ba]l2 < 2 (1 — (1 = /13)) [[b1 — ba |2, which
shows that the same upper bound also holds for ||§z1 |2 and finishes the proof of the desired estimate. O
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E. Proof of Approximation Ability

Lemma A.l. (Faster Convergence = Better Approximation Ability). Assume the problem setting in Sec 2. The
approximation ability can be bounded by two terms:

inf sup Plyg <opu ?infsup P||Qe(x) — Q*(x)|r +M inf Cvg(k, ).
¢9Q*€Q* 6 Q- PED
| S —

approximation ability of the neural module best convergence

Proof. Foreach ¢ € ¢,0 € ©,Q* € QF,

ls0(x,b) = ||A1g5(Qs(x), b) — Opt (Q* (), b)|2 (15)
< |21} (Qo(x),b) — 0pt(Qo(x),b)||2 + [|0pt (Qo (), b) — Opt (Q* (), b)||2 (16)
< Cvg(k, 9)[|a1g3(Qo(x),b) — Opt (Q*(x),b)|l2 + [ Qa(z) "o — Q* () "2 (17)
< Cvg(k, @) - M + || (Qo(a) ™" — Q" (=) ~") b2, (18)

where in the last inequality we have used the facts that the initialization is assumed to be zero vector, i.e., Alg¢ (Qo(x),b) =

0, and that M > sup,c v pe5 OPE (Q* (), b). Note that the independence of (x, b) and the fact that Ebb™ = 571 imply
that

Bl (Qo(2) ™" — Q" (x)~") blI3 (19)
=Tr ((Qo(z) ' = Q" () )T (Qo(@) " — Q*(x) o 1) (20)
= 0 [Qo(x) ™" — Q" (x) 7 |I @1
= 03 1|Qo ()~ (Qs(x) — Q" (2))Q" (=) "% (22)
<~ t0pl|Qo(x) — Q" (@)% (23)
Therefore, we see from Holder’s inequality that
ol (Qo(x) " = Q"(x) ") bll2 < 1203 |Qo (@) — Q" ()] - (24)
Collecting all the above inequalities, we have
Plyg < Cvg(k,¢) - M + oo™ >P||Qo — Q* || r. (25)
Taking supremum over Q*, we have
sup Ply g < Cvg(k,¢)- M +opu™ sup PllQo — Q*||r. (26)
QreQ* QreQ*
Taking infimum over ¢ and 6, we have
f Pty < inf -M 2 inf sup P|Qy — Q*|F. 2
seieo S Ploo < In Cvg(k, @) - M + opu™" inf S 1Qo — Q"[| 27
O

Lemma A.2. (Faster Convergence = Better Representation of Q). Assume the problem setting in Sec 2. V¢ € ®,0 €
0,Q* € Q" ={X¥ x B~ SiXLd}, it holds true that

PO, =c = P|Qy— Q|7 <0, °L* (Ve + M - Cvg(k, $))*. (4)

Proof. We shall prove the same conclusion under a slightly weaker assumption that Péi’ g e Foranyx € X,be B, we
have

ly0() > ||Opt (Qo(x),b) — Opt (Q* (), b) [|2 — [A1gl (Qs(z),b) — Opt (Qo(x),b) |2
> [|Qo(z)"'b — Q*(x) b2 — Cvg(k, @)||opt (Qa(x),b) |2 (28)
> [|Qo(x) "o — Q" ()~ 'bll2 — M - Cvg(k, ¢). (29)
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Rearranging the terms in the above inequality, we have

1Qo(2)™"b = Q(x)~"bll2 < £y 0(x) + M - Cvg(k, ).

By Eq. 22 and the inequality that || AB||r < ||A||2||B||r for any given A € R™*" and B € R"*", we have that

Ep||Qo ()"0 — Q" (x)~'b]3
= 031|Qo ()~ (Qo(x) — Q" (2))Q" (x) "7
;2 11Qe(x) — Q" (@) |17
Q@) IBlIQs ()13
> 03| Qo(x) — Q" ()II%/L",

\ \/

which implies that,
1Qo(x) — Q*(®)[|F < 0, 2L Ep|| Qo () ~'b — Q* () 'b]3.
Combining it with Eq. 30 and the fact that (P&z,,g)? < Pﬁiﬁ, we have
PllQs(x) — Q" ()| < 0, °L*P(Ly 9 + M - Cvg(k, 9))?
= 0, 2L (PG g + (M - Cvg(k, ))* + 2(M - Crg(k, ¢))Ply,g)
< 0, °L* (e + (M - Cvg(k, ¢)) + 2(M - Cvg(k, ))VE)
=0, 2L (VE + M - Cvg(k, 9))”,

which completes the proof.

(30)

€2y
(32)

(33)

(34)

(35)

(36)
(37
(38)
(39)
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F. Proof of Generalization Ability

In this section, we shall prove the following result, which is a refined version of Theorem 3.1.

Theorem F.1. Assume the problem setting in Sec 2 and let v > 0. Then for any t > 0, with probability at least 1 — e, the
empirical Rademacher complexity of élf"c(r) can be bounded by

R0 (r) <\V2dn~ 3 Stab(k) <\/(ﬁ + MCvg(k))2C1(n) + Ca(n, t, k,r) + 4)
+ Sens(k)Bs,
where

C1(n) = 2160, 2L* log N (n™ %, £g, Ly(P,))

768B2t
02 (na t7 kv T) =

+ 72()BQ]ERn€lQOC(rq)> log N'(n™ %, Lo, Lo (Py)),

ry = oy 2LA (VT + MCvg(k))?, 68°(rq) = {[|Qs — Q*[|r : 6 € ©, P||Qs — Q*[|3 < 74}, Bo = 2LVd, and By =
2 8UPg, prc0 H¢1 — @22

Furthermore, for any t > 0, the expected Rademacher complexity of €l]‘_-’c(r) can be bounded by

ER,£'2¢(r) <\V/2dn~ 7 Stab(k) (\/(\/F + MCvg(k))2C1(n) + Ca(n,t) + Cs(n,t) + 4)
+ Sens(k)Bo,
where

Ci(n) = 2160, *L*log N,

_ 4 2 768 B2
Ca(n,t) = (1 + 3Bge "/log Ng + \/—%BQ logNQ> %BQ logNg +1t - € log N,
— 360

Cs(n,t) = 12BQeft\/10gN'Q + %BQ 10gNQ,

and Ng = N'(n" 2,40, L.

In order to prove Theorem F.1, we first prove the following theorem, which reduces bounding the empirical Rademacher
complexity of £/2¢(r) to that of ElQ"c (rq), and plays an important role in our complexity analysis.

Theorem F.2. Assume the problem setting in Sec 2. Then it holds for any r > 0 that
R, 0'2(r) < V/2d Stab(k) R, 0'¢(r4) + Sens(k) B, (40)

with g = o, 2LA(VT + MCvg(k))?, €5°(rg) = {Qe — Q*[lr = 6 € ©,P|Qy — Q|7 < 714} and By =
2 8UPg, prc@ [p1 — P22

Proof. Let k € N be fixed throughout this proof. We first show that the loss £, g is Stab(k)-Lipschtiz in Qg and Sens(k)-
Lipschitiz in ¢. For any (x, b) € X’ x B, by using the triangle inequality and the definitions of Stab(k, ¢') and Sens(k), we
can obtain the following estimate of the loss:

[€p0(x) — Ly o ()|

= [[[2195(Qo(x), b) — Opt(Q* (), b)||2 — 219 (Qor (2),b) — Opt(Q* (2), b) 2]

< |21} (Qo(x), b) — A1gl, (Qo (2),b)]2

< 219 (Qo(@), b) — B1g (Qu (), b) |12 + |19} (Qo(), b) — A1l (Qo (), )|
< Stab(k, ¢")||Qa () — Qo (x)]|2 + Sens(k)|¢ — ¢'[|2

< Stab(k)||Qo(x) — Qo (x)]|2 + Sens(k)||¢ — ¢'||2.

(41)
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where we write Stab(k) = sup g Stab(k, ¢) for each k € N.

We then establish a vector contraction inequality, which is a modified version of Corollary 4 in [20] and Lemma 5 in [21].
Note that the empirical Rademacher complexity of El]?c can be written as:

n—1

1 S 1
R, (r) = EE{T sd%:) Z oilye(x;) = EIEUM_lE(,n su(};) Z oilgo(xi) + onlyo(Tn), (42)
0 izt 0 =1

where the supremum is taken over the parameter space {(¢,0) : ¢ € ®,0 € ©, P{Z ; <r}.

Let U,—1(¢,0) = Z?;ll oilg.0(x;) for each (¢, 8). We now assume without loss of generality that the supremum can be
attained and let

¢1,01 = argsug (Un-1(9,0) + Ly o(xy)),

)

@2, 0> = arg sug) (Un_l((b, 0) — £¢79(wn)),

)

since otherwise we can consider (¢1, 61) and (¢2, 62) that are e-close to the suprema for any ¢ > 0 and conclude the same
result. Then we can deduce from Eq. 41 that

n—1
E,,, sup Z oilgo(x;) + onlyo(Tn)
®:0 =1
= 3 (Una(91,00) + Loy 0, (@) + Un1(62,602) — Ly 0, ()
= %(Un—l(d)l, 01) + Un_1(¢2,92) + (f¢1791 (JZn) — €¢2792 (.’I}n)))
< 3 (Unea(61,00) + Unoa(6,02)) + 3 (S1ab(k) |Qo, (@) — Qo (@) + Sens(k) |61 — a]2)
< %(Un—l(d)la 01) + Un—1(2,62)) + %Smb(k)HQel () — Qo,(xn)||F + Sens(k)Bo,

where By = %supm,@e@ [¢1 — d2ll2.

Foreachx € X,0 € ©and 1 < j, k < d, let Qg’k(:c) be the j, k-th entry of the matrix Qg (). The the Khintchine-Kahane
inequality (see e.g. [20]) gives us that

E,, sup Z oilpe(xi) < 5 (Un—1(¢1,01) + Un—1(92,02)) + Sens(k) Bs (43)

7 a=1

=N =

+ 5Stab(k)V2E, | 3 i (Q4f (@a) - QB (@) (44)

Jik

)

where €, = (e¢/¥)",_, are independent Rademacher variables. Hence, if we denote by s(e,) the sign of
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Siner” (Q (xn) — Qg’f(wn)> and by Q*7"F(x) be the 7, k-th entry of the matrix Q* (), then we can obtain that

E,, sup Z oilyo(x;)

L)

< E% [(Unl(qbl, 01) + Stab(k)V2s(e€,,) JZ’; eg‘;’“ng“(mn)>

+ <U,,,_1<¢2, 62) — Stab(k)V/2s(en) ) e%”“@éf(aen))] + Sens(k) Bo
Ik
_E, [(Unl(qbl, 01) + Stab(k)V2s(e,,) Z et (Qg’f(wn) - Q*j’k(‘”n)) )

(3% 2 .
J.k

+ <Un_1(¢2, 02) — Stab(k)V/2s(€n) > el (ng(xn) - Q*j’k(mn)) )] + Sens(k)Bsg.

Jik

Then by taking the supremum over (¢, #) and using the fact that o,, is an independent Rademacher variable, we can deduce
that

Eo, sup Y oilyo(;)

0o

<Ee; {sup (Un_lw, 0) + Stab(k)V2s(e,) Y e (@4 (@a) = @9 (@n)) )

¢,0 Ik

[\

+ sup <Un_1(¢, 0) — Stab(k)V2s(€n) > el* (Qé’k(mn) - Q*j’k(wn)) )] + Sens(k)Bg

®,0 Sk

=E., E,, {sup (Un_1(¢, 0) + Stab(k)\/ian Z efgk (Qék(mn) — Q*j’k(wn)) )] + Sens(k) By
20 ik

¢,0

—E., [sup (Un_l(gb, 0) + Stab(k)V2 Y e (Q (wa) — Q9 (wn)) ﬂ + Sens(k) Ba,
7,k

where we have used the fact that -, , e/, (Q}F () — Q**(,)) is a symmetric random variable in the last line.

By proceeding in the same way for all other o,,_1, - - - , 01, we can obtain the following vector-contraction inequality:

E, sup201£¢ o(x;) <\fStab E,., [supZZeJ k (QJ’ ;) Q*Jk(mn))]

¢911 i=1 j,k (45)

+ nSens(k)Bo.
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The first term on the right-hand side can be bounded by using the Cauchy-Schwarz inequality as follows:

Eer, |sup 3 D6l (@5 (@n) ~ Q7 ()
i=1 jk

i n
o1n e, Sl;p Z O Z eg’k (ng(wn) - Q*J’k(wn))
i=1 gk

- : : : 46
<Ep B (s ) or [ (3105 @) - Q9@ (46)
i i=1 3.k 3.k

=Eo,., Ee,.,, sup > 0id||Qo(xn) — Q*<wn)||F]
L i=1

= dEq,, [S%pZUiIIQe(wn) - Q*(%)IIF] :

i=1

Therefore, bounding the Rademacher complexity of El}-"c(r) reduces to bounding the Rademacher complexity of the space
of functions ||Qy — Q*||F. Recall that the supremum is taken over the parameter space where (¢, ) € ® x © satisfies
P/l3 , < r. Note that Lemma A.2 implies that,

PlQo — Q*|3 < rq =05 2L* (VE+ M - Cvg(k, 9))”. 47)

Hence, by defining the following function space:
(8°(rq) == {11Qo = Q"|lr : 0 € ©, P Qs — Q"[|F < g}, (48)

we can conclude the desired relationship between R,,¢'2°(r) and R,,¢'5%(r,) from the inequalities Eq. 45 and Eq. 46.
O

With Theorem F.2 in hand, we see that, for each r > 0, in order to obtain the upper bounds of Rnflf?c(r) in Theorem F.1, it
suffices to estimate R,,('$°(r,), i.e., the Rademacher complexity of the function space £3°(r,).

The following theorem summarizes the estimates for the empirical and expected Rademacher complexity of the local class
Elé’c, which will be established in Propositions F.1 and F.2, respectively.

Recall that, for any given € > 0, a class of functions F and pseudometric || - ||, the covering number N (¢, F, || - ||) is defined
as the cardinality of the smallest subset / of F for which every element of F is within the e-neighbourhood of some element
of F with respect to the pseudometric || - ||.

Theorem F.3. Assume the problem setting in Sec 2. Let v > 0, ry = o, 2L*( /7 + M Cvg(k))? and 05°(rq) = {llQo —
Q*|lr:0€0,P|Qo— Q*||% <1y} Then forall t > 0, we have with probability at least 1 — e~* that

R U5%(rg) <% [(Cl(n)(\/? + MCvg(k))? + Ca(n, t, k, r)) 4 4} , (49)

where
Ci(n) = 2160, 2L log N (0™ 2, £g, La(Py)),

T68BRt
CQ(n, ta k7 7‘) = (

+ 7zoBQ1ERnelQOC(rq)> log N'(n™%, £, Ly(P,)),

and Bg = 2LV/d.
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Moreover, for all t > 0, we have that

Nl=

ER,(5(rq) < n"2 {(Cl (n) (V7 + MCvg(k))? + Co(n, t)) + Cs(n,t) + 4} ) (50

where

Ci(n) = 2160, *L*log N,

45 2880 768B
Ca(n,t) = (1 +3Bge "\/log N + \fBQ log/\/'Q> NG Bglog Ng +t < log N,
_ 360
Cs(n,t) = 12BQ67t IOgNQ + ﬁBQ 10gNQ

and Ng = N'(n" 2,00, L.

We first establish the estimate for the empirical Rademacher complexity Rnélgoc (rq), i.e., Eq. 49 in Theorem F.3.

Proposition F.1. Assume the problem setting in Sec 2. Let Bg = sup (g zycoxx [|Qo(x) — Q" ()|, and for eachr > 0
let rq and ('$°(ry) be defined as in Theorem F.2. Then we have that

Rot8(rq) < < (14 3Bqylog N (., £5°(ry), La(P)) ) oD

Moreover, for all t > 0, it holds with probability at least 1 — e~ that

Rob5(ry) < < (14 3C(rg, 1)y l0g N (. £5°(rg), La(P) ) (52)

2
1685t
3n

with the constant C(r4,t) = (3% +

+BBoER,(5(r,)) .

Proof. The classical Dudley’s entropy integral bound for the empirical Rademacher complexity gives us that

Rnﬁlé’c(rq) < Dlgfo (4a+ —/ \/10g/\/ (e, E “(rq), La(P, ))d) (53)

Observe that all functions in ¢/3°(r,) take value in [0, Bg], which implies for all € > B, that, N (e, £3°(r), L2(Py)) <
N (€,05%(rq), Loo (Py)) = 1 and consequently the integrand in Eq. 53 vanishes on [Bg, 00). Hence we have that

loc : 12 ba loc
Rl (ry) S(}gf;’) dot = [ \log N (e g7 (ry). La(Py) de

< f I/BQ \/log/\/ 09 (ry), La(Py)) de

<—+ logJ\/(

locr 9 ,
-+ 25 ‘ <q>L<P>)

vn’

where we used the fact that N (e, £'3¢(ry), L2(P,)) is decreasing in terms of € for the last inequality. This proves the estimate
Eq. 51.

In order to establish the estimate Eq. 52, we shall bound the empirical error P, ||Qg — Q*||% with high probability. Let us
consider the class of functions £!5(ry) = {||Qs — Q*||% : 0 € ©, P||Qy — Q*||3- < ry}, whose element takes values in
[0, B3]. Moreover, we see it holds for all [|Qp —Q* |3 € £135(r,) that P||Qs —Q* || < BéPHQg —Q*||% < Bjrq. Hence,
by applying Theorem 2.1 in [15] (with F = fl‘”(rq) a=0,b= BQ, a=1/4andr = Bqu) and the Cauchy-Schwarz
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inequality, we can deduce that, for each ¢ > 0, it holds with probability at least 1 — e~ that

. . 5 2B2r,t 13t
Py|Qo — Il < PlQo — Q" l[f + 5ER LS (rg) + || — 2 + By~
5 loc T'q Bét 2 13t

3 16B%t
< S+ SBQER, I8 (r,) + — -

Consequently, we see it holds with probability at least 1 — e~* that, N'(e, £!$°(ry), L2(P,)) = 1 for all e > C(rq, t), with
the constant C'(rg, t) defined as in the statement of Proposition F.1. Substituting this fact into the integral bound Eq. 53 and
following the same argument as above, we can conclude Eq. 52 with probability at least 1 — e™¢. O

Now we proceed to prove the estimate of the expected Rademacher complexity ERnélQ(’c(rq), i.e., Eq. 50 in Theorem F.3.

Proposition F.2. Assume the same setting as in Proposition F.1. Then it holds for any r,t > 0 that

1
2

ER,(5¢(ry) <n™% Kcl (n,t)(v/r + MCvg(k))? + Cy(n, t)) + C3(n,t) + 4] , (54)

where C1(n,t), Cay(n,t) and Cs(n, t) the constants defined as in Eq. 57, Eq. 58 and Eq. 59, respectively.

Proof. Letr,t > 0 be fixed throughout this proof. Since it holds for all ¢ > 0 and n € N that NV (e, £3°(ry), L2(Py)) <
N(e, Lo, L), we can deduce from Proposition F.1 that

ER5°(ry) < 2 (14 3[C(rg, )1 = ¢7) + Bae™"] | flog N (5. Lo, Lec) ) (55)

with the constants B¢ and C(r, t) defined as in the statement of Proposition F.1.

The above estimate gives an implicit upper bound of ER,,(!5°(r,) since C(r4, t) also involves ER,,¢'$°(ry). Now we shall
introduce the notation N = N/ (ﬁ, (g, Lso) and derive an explicit upper bound of ER,,£3°(r). By rearranging the terms

in Eq. 55 and using the definition of C'(r,, t), we can obtain that

n ocC — n
%ERMQ (rq) —1—3Bge ™" /log N}

3 16B2t
<3(1- e_t)\/(rq + 9 4 5BQERn€lQOC(Tq)) log NG5

(56)

2 3n

We shall assume without loss of generality that IERHESC (rq) > % (1 +3Bge !, /log Ng) , since otherwise we have a
trivial estimate that ERnélQOC(rq) < 4n~zAp, with A; =1+ 3Bge™t, /logJ\/g. Then by squaring both sides of Eq. 56

and rearranging the terms, we get that

n n
TG(TERMSC(%))Q - ({Al +45(1 — e )?Bg 1ogN5>ERnegC(rq)

+ A7 = 9(1— e ")*Azlog N < 0,
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2
16BQt

with the constant Ay = 3% +

. This implies that

8 [vnA A
ER, (S (ry) < - [‘/ﬁz S+ 45(1— ") Bo log N + ([\/Z L1 45(1 - e7)?Bglog NG

- %[A% —9(1 —e "4, 1og/\/5}) }

360

NG

—16[AT —9(1 — e ")* A, log/\/g]) 2] .

360
Jn

n [4A1 + (1—e")?BglogNg + <[4A1 + (1—-e7")’Bq 10g/\/'5]2

Hence, for each ¢ > 0, by introducing the following constants

C1(n,t) = 216(1 — e~ ")?0, 2L* log N3,

360 768 B2
Co(n,t) = [44; + ﬁ(l —e )?Bg 1ogN5]2 — 1642 +t(1 —e1)? 2 log NG
45 2880
o —t n —t\2 n —t\2 n
768 B2
+ (1 — e h)? © log NZ,

360
Cs(n,t) = 12Bge™ ", [log N + %(1 —e "2Bg log Ng,

with Bg = sup(g zycoxx [Qo(x) — Q" (z)|F < 2v/dL and NG = N(ﬁ,@g, L), we can deduce that

ER, ('S (ry) < n-? {(Cl (n,t)(v/r + MCvg(k))? + Cy(n, t)> i + C3(n,t) + 4] :

(57)

(58)

(59)
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G. Poof of Algorithm properties of RNN

We denote by RNN’; a recurrent neural network that has k unrolled RNN cells and view it as a neural algorithm. It has been

proposed in [18] to use RNN to learn an optimization algorithm where the update steps in each iteration are given by the
operations in an RNN cell

Y1 ¢ RNNcell (@, b, yi) := Vo (Who (WETL - W2o (Wye + Wagk))) - (60)
In the above equation, we take a specific example where the RNNcell is a multi-layer perception (MLP) with activations

o = RELU that takes the current iterate y; and the gradient g, = Qyy + b as inputs.

(I) Stable Region. First, we show that when the parameters satisfy ¢, := supg ||V [|2||W} + W3 Q||2 HlL=2 W2 < 1,
the operations in RNNcell are strictly contractive, i.e., || Yr+1 — Yrll2 < collyr — Yr—1l2-

Proof. By definition,

[Ykt1 = yrllz = Vo (Who (WE - W20 (Wiyy + Wagy)))
—Vo (Wro (WE - W20 (Wiye—1 + Wagk-1))) ll2
< Vlalle (Wre (WEL - W2o (Wlyr + Wagr)))
—o (Whe (WEL W20 (Wlyk—1 + Wagik—1))) |2

Since the activation function o = RELU satisfies the inequality that |o(x) — o(x’)||2 < || — &'||2 for any @, ', we have

Yrs1 — wella < VI WEe (WEL - W (Wiyy, + Wage))
—Who (WEF o W2 (Wiyk—1 + Wagk—1)) |2

Similarly, we can obtain

lyk+1 — Ykl

<V IW (|2 - W22l (Wiyk + Wagk) — (Wiye—1 + Wagk-1) |2
= [[VIl2WH ]z W2l (W] + QW3 ) (yr — yr—1) 2

< VI2WEl2 - W2 2IW7 + QWa llallyk — yr-1ll

< cpllyr — yr—1ll2-

Therefore, if ¢4 < 1, then the operation is strictly contractive. O

(IT) Stability. We shall show the neural algorithm RNN’; has a stability constant Stab(k, ¢) = O(1 — c’(;) (see the definition
of stability in Sec 3).

Proof. Let us consider two quadratic problems induced by (@, b) and (Q’, b’), and denote the corresponding outputs of
RNNJ as yj, = RNNE(Q, b) and y;, = RNNE(Q', ).

L ! L N
Denote ¢ = [[V[2|Wi + W3QI2TT/Ls IWil2. € = [VI2IWE + WiQ 2Ty W2 and &5 =
[V [|2|Wa |2 T/, W ||2. First, we see that

k

lyrllz < cZllyr—1ll2 + éollbllz < () ¥llyollz + éollbll2 > ()"
=1

(61)

Colblla1 = (¢§)") _ 2ylb

Q - Q
1—c¢ 1_%
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Similar conclusion holds for y;.. Then, by following a similar argument as that for the proof of the stable region, we can
deduce from yo = y| that

Iy — yill2

< IVIAWH 2 - W22 l[(W] + WEQ)yk—1 — (W) + WEQ )y + WE (b =)z

<V IlW 2 W22 (W] + WEQlI2llyk—1 — yr_all2 + 1Q — Q2 W 2l g1 [l
+ W2l (6 = b)]2)

Sollbll2
< Qllyr-1— Yh1ll2 + E)1Q — Q2 f

Collb—b'||2
¢

LB B
< () ¥ llyo — yoll2 + (14’_ Q= Q2+ épllb—bll2 | > (c3)
d> i=1
2 1 - ()" - @Q)k
= 1¢ T Q- Q2+ g —— - [6— b2
_ ¢ Cd> c¢
Therefore, the stability constant is of the magnitude O(1 — c’(;) O

(III) Sensitivity. We now proceed to analyze the sensitivity of the neural algorithm RNN’;5 as defined in Sec 3. Note that
the strong non-linearity in the RNN cell and the high-dimensionality of the parameter space significantly complicate the
analysis of the Lipschitz dependence of RNN’(; with respect to its parameter ¢ = {W, Wt W2, ... WL V}. To simplify
our presentation, we shall assume the parameter ¢ are constrained in a compact subset ® of the stable region, and show
the neural algorithm RNN’;5 has a sensitivity Sens(k) = O(1 — (infsea cs)*). A rigorous sensitivity analysis of RNN with
general weights is out of the scope of this paper.

Proof. Let the range of parameters ® is a compact subset of the stable region, such that for all ¢ € ®, ¢y =
supg [V [2IW1 + W3Qll2 T~y W]z < co < 1 for some constant co. Let ¢, ¢’ € ® be two given sets of param-

eters. For each k € N, we denote y;, = RNN(’;(Q, b) and y, = RNN¥,(Q, b) the outputs corresponding to the parameters ¢
and ¢', respectively. Then we have that

lyr — yill2 = [[RNNcelly(Q, b, yr—1) — RNNcelly (Q, b, y; 1)l
< |IRNNcelly(Q,b,yy ;) — RNNcellg (Q,b,y; 1)z

+ ||RNNcelly(Q, b, yk—1) — RNNcelly(Q, b, y;_1)ll2
< ||RNNcelly(Q, b, yj_q) — RNNcelly (Q,b,yp_1)ll2 + collyr—1 — Y1l

If there exists a constant K, independent of k, ¢, ¢', such that
[RNNcelly(Q,b,y;_1) — RNNcelly (Q,b,yi_q)|l2 < Kll¢ — ¢'||2, (62)
then we can obtain from yo = yj, that

lyr — yrlle < vllé — ¢'ll2 + collyr—1 — yi_1ll2

k k
. 1—-c¢
<Klo=¢l Y " = T Kllo = &l
i=1

The fact that ¢, < ¢ < 1 for some constant ¢, implies that the magnitude of sensitivity is O(1 — (inf yea c)").

Now it remains to establish the estimate Eq. 62. Foreach k € N, ¢ = {W}, W, W2 ... WL V}iandl=2,--- L, we
introduce the notation

fo=Wo (Wt W2 (Wiys + Wagy)) ©2
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with f§ = Wiy + W3 gy. Then we have foreach I = 1,- -, L that

!
1£502 < TTIW7 N2 (W + Wi Qllallykllz + W3 l12]1bll2) = cillyxllz + élbll2, (64)

j=2
with the constants ¢; := (H§:2 [Will)|[WE + W3Q
induction, we can see that
15 = folle = WFa(fi=h) = Wha(f5 Yl
< WE =Wl 5 e + IW Il £y~ = £

2. ¢ o= ([T5_y |[W]|2) [W3 2 forall 1 = 1,..., L. Then by

< W5 = WLl e 1 (I - g2

W ol £ fﬁnz)

L L L
< Z( 11 |Wj||2)|Wl Wl s + <H||Wl||2>||fqla e
1=2 =2

j=l+1
Thus we have that
[RNNcelly(Q,b,yr) — RNNcelly (Q,b,y)llz = [Vo(fy) — V'a(fi)llz
<V =V'I2llf5llz + IVI2IFE — £

L L
<V = V']l 2 s + |V||2[Z ( II ||Wﬂ||2)||wl W

1=2 Nj=I+1

L
= (D0 )17t = g2 ).
1=2
Furthermore, we see that
175 = forllz = (Wi + WaQ)yx + Wab — (W' + W3'Q)yx + Wy blla
< Wi = Wit + (W = WahQllallykllz + [[Wy — W3 2][b]2
< Wi = Witllllylla + W2 = WHIIQl2llyll2 + [18]]2),
from which we can conclude that

IRNNcelly(Q,b,yx) — RNNcelly (@, b, yx)ll2

L L
<LV = VI + S [||V||2( 11 |Wj||2)||f§;12} Wt — W,
=2

j=l+1

L
n ||v2(H ||Wl||2) [|Wf W el + 192 — W@l el + 1B]2)]
=2

Note that we have assumed that the set of parameters ® is a compact subset of the stable region and (@, b) € SZde X B are
bounded, which imply that for all ¢, ¢’ € @, the corresponding outputs (yx)ren and (y},)ken are uniformly bound, and
hence || fé, |l2 is bounded for all k and I = 1,..., L (see Eq. 64). Consequently, we see there exists a constant K such that
Eq. 62 is satisfied. This finishes the proof of the desired sensitivity result. O

(IV) Convergence. For the convergence of RNN(’;, we can only give the best case guarantee. It is easy to see that with the
following choice of ¢, RNN’;5 can represent GD*:
V=I[,-1, Wl=[-1", WZ=|-sI;sI]", W!'=TIforl=2,---,L. (65)

Therefore, for the best case, RNij) can converge at least as fast as GDf.
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H. Experiment Details

Here we state the configuration details of the experiments.

e Convexity and smoothness. They are set to be © = 0.1 and L = 1, respectively.

e Dataset. 10000 pairs of (x,b) are generated in the following way: 10000 many « are uniformly sampled from
[—5,5]19 x UP*5, where U>*5 denotes the space of all 5 x 5 unitary matrices. Each input x actually is a tuple
x = (24, Uy) where 2z, € [—5,5]'0 and U, is unitary. 10000 many b are uniformly sampled from [—5, 5]°. These
10000 pairs are viewed as the whole dataset.

e Training set S,,. During training, n samples are randomly drawn from these 10000 data points as the training set. The
labels of these training samples are given by y = Opt (Q*(x), b).

e More details on Q*(xz). As mentioned before, each x is a tuple = (2,Uz). Then we implement Q*(x) =
Udiag([g* (zz), 1, L])U, , where g* is a 2-layer dense neural network with hidden dimension 3, output dimension
3, and with randomly fixed parameters. Note that in the final layer of g*, there is a sigmoid-activation that scales the
output to the range [0, 1] and then the range is further re-scaled to [, L]. Finally, g*(z,) is concatenated with [, L]
to form a 5-dimensional vector with smallest and largest value to be i and L respectively. This vector represents the
eigenvalues of Q* ().

e Architecture of Qy. @y has the same form as Q*(x), except that the network ¢g* in Q* becomes gy in Qy. That is,
Qo(x) = Ugdiag([ge(2), 11, L])U, . Here gy is also a 2-layer dense neural network with output dimension 3, but
the hidden dimension can vary. In the reported results, when we say hidden dimension=0, it means gy is a one-layer
network.

For the experiments that compare RNN’; with GD’; and NAG’;;, they are conducted under the ‘learning to learn’ scenario, with
the following modifications compared to the above setting.

e Dataset. Instead of sampling (i, b), here we directly sample the problem pairs (@, b). Similarly, 10000 pairs of (Q, b)
are sampled uniformly from 8" x [5, 5]°.

e Architecture of RNN’;. For each cell in RNN’;, it is a 4-layer dense neural network with hidden dimension 20-20-20.

For all experiments, each model has been trained by both ADAM and SGD with learning rate searched over [1e-2,5e-3,1e-
3,5e-4,1e-4], and only the best result is reported. Furthermore, error bars are produced by 20 independent instantiations of
the experiments. The experiments are mainly run parallelly (since we need to search the best learning rate) on clusters which
have 416 nodes where on each node there are 24 Xeon 6226 CPU @ 2.70GHz with 192 GB RAM and 1x512 GB SSD.



