
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

Understanding Deep Learning with Reasoning Layer

Anonymous Authors1

Abstract
Recently, there is a surge of interest in combin-
ing deep learning models with reasoning in or-
der to handle more sophisticated learning tasks.
In many cases, a reasoning task can be solved
by an iterative algorithm. This algorithm is of-
ten unrolled, and used as a specialized layer in
the deep architecture, which can be trained end-
to-end with other neural components. Although
such hybrid deep architectures have led to many
empirical successes, theoretical understandings
of such architectures, especially the interplay be-
tween algorithm layers and other neural layers,
remains largely unexplored. In this paper, we take
an initial step toward an understanding of such
hybrid deep architectures by showing that proper-
ties of the algorithm layers, such as convergence,
stability and sensitivity, are intimately related to
the approximation and generalization abilities of
the end-to-end model. Furthermore, our analysis
matches nicely with experimental observations
under various conditions, suggesting that our the-
ory can provide useful guidelines for designing
deep architectures with reasoning layers.

1. Introduction
Many real world applications require perception and reason-
ing to work together to solve a problem. Perception refers
to the ability to understand and represent inputs, while rea-
soning refers to the ability to follow prescribed steps and
derive answers satisfying certain structures or constraints.
To tackle such sophisticated learning tasks, recently, there
is a surge of interests in combining deep perception models
with reasoning modules.

Typically, a reasoning module is stacked on top of a neu-
ral module, and treated as an additional layer of the overall
deep architecture; then all the parameters in the architec-

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

tim
e
betw

een
step

s.
T
h
e
u
ltim

ate
aim

is
to

concurrently
propose,

create,
and

characterize
new

m
aterials,w

ith
each

com
ponent

transm
itt-

in
g

an
d

receivin
g

data
sim

ultan
eously.

T
h
is

process
is
called

“closin
g
th
e
loop,”

an
d
in
verse

design
is
a
criticalfacet

(12,15).

In
verse

d
esig

n

Q
uan

tum
ch

em
ical

m
eth

ods
reveal

properties
of

a
m
olecular

system
on

ly
after

specifyin
g
th
e

essen
tialparam

eters
of

th
e
con

stituen
t
atom

ic
n
uclei

an
d
th
eir

th
ree-dim

en
sion

al
(3D

)
coor-

dinate
positions

(16).Inverse
design,as

its
nam

e
suggests,inverts

this
paradigm

by
starting

w
ith

th
e
desired

fun
ction

ality
an

d
search

in
g
for

an
ideal

m
olecular

structure.H
ere

the
input

is
the

fun
ction

ality
an

d
th
e
output

is
th
e
structure.

Fun
ction

ality
n
eed

n
ot

n
ecessarily

m
ap

to
on

e
un

ique
structure

but
to

a
distribution

of
prob-

able
stru

ctu
res.

In
verse

d
esign

(F
ig.

2)
uses

optim
ization

,
sam

plin
g,

an
d

search
m
eth

ods
to

n
avigate

th
e
m
an

ifold
of

fu
n
ction

ality
of

ch
em

ical
sp

ace
(17,

18).
O
n
e
of

th
e
earliest

efforts
in

in
verse

design
w
as

the
m
ethodology

ofhigh-throughput
virtual

screen
in
g
(H

T
V
S).

H
T
V
S
h
as

its
roots

in
th
e

pharm
aceuticalindustry

fordrug
discovery,w

here
sim

ulation
is
an

exploratory
toolfor

screening
a

large
num

ber
of

m
olecules

(19,20).H
T
V
S
starts

w
ith

an
initial

library
of

m
olecules

built
on

the
basis

of
research

ers’in
tuition

,
w
h
ich

n
arrow

s
dow

n
th
e
poolofpossible

can
didate

m
olecules

to
a
tractable

ran
ge

ofa
th
ousan

d
to

a
m
illion

.
In
itial

can
didates

are
filtered

on
th
e
basis

of
focused

targets
such

as
ease

of
syn

th
esis,

sol-
ubility,toxicity,stability,activity,and

selectivity.
M
olecules

are
also

filtered
by

expert
opin

ion
,

even
tually

con
sidered

as
poten

tial
lead

com
-

poun
ds

for
organ

ic
syn

th
esis.Successfulm

otifs
an

d
substructures

are
furth

er
in
corporated

in
future

cycles
to

furth
er

optim
ize

fun
ction

ality.
A
lthough

H
T
V
S
m
ight

seem
like

an
ensem

ble
version

of
th
e

direct
approach

for
m
aterial

design
,
it

differs
in

its
un

derlyin
g
ph

ilosoph
y

(4).H
T
V
S
is
focused

on
data-driven

discovery,
w
hich

incorporates
autom

ation,tim
e-criticalper-

form
ance,and

com
putationalfunnels;prom

ising
can

didates
are

furth
er

processed
by

m
ore

ex-
pen

sive
m
eth

odologies.A
crucialcom

pon
en

tis
feedback

betw
een

th
eory

an
d
experim

en
t.

T
h
e
H
T
V
S
m
eth

odology
h
as

been
quite

suc-
cessfulatgen

eratin
g
n
ew

an
d
h
igh

-perform
in
g

m
aterials

in
oth

er
dom

ain
s.In

organ
ic

ph
oto-

voltaics,m
olecules

h
ave

been
screen

ed
on

th
e

basis
offrontierorbitalenergies

and
photovoltaic

conversion
efficiency

and
orbitalenergies

(21–24).
In

organ
ic
redox

flow
batteries,redox

poten
tial,

solubility,
an

d
ease

of
syn

th
esis

(25,
26)

are
prioritized.

For
organ

ic
ligh

t-em
ittin

g
diodes,

m
olecules

h
ave

been
screen

ed
for

th
eir

sin
glet-

triplet
gap

and
photolum

inescent
em

ission
(27).

M
assive

exploration
s
of

reaction
s
for

catalysis
(28)

or
redox

poten
tials

in
bioch

em
istry

h
ave

been
un

dertaken
(28).For

in
organ

ic
m
aterials,

th
e
M
aterials

P
roject

(29)
spaw

n
s
m
an

y
appli-

cation
s
such

as
dielectric

an
d
opticalm

aterials
(30),

ph
otoan

ode
m
aterials

for
gen

eration
of

ch
em

ical
fuels

from
sun

ligh
t
(31),an

d
battery

electrolytes
(32).

A
rguably,an

optim
ization

approach
is

pref-
erable

to
H
T
V
S
becau

se
it

gen
erally

visits
a

sm
aller

n
u
m
ber

of
con

figu
ration

s
w
h
en

ex-
p
lorin

g
th
e
m
an

ifold
of

fu
n
ction

ality.A
n
op

-
tim

ization
in
corp

orates
an

d
learn

s
geom

etric
inform

ation
ofthe

functionality
m
anifold,guided

by
generaltrends,directions,and

curvature
(17).

W
ithin

discrete
optim

ization
m
ethods,E

volu-
tion

Strategies
(E
S)is

a
popular

choice
for

global
optim

ization
(33–35)

and
has

been
used

to
m
ap

ch
em

ical
space

(36).
E
S
in
volves

a
structured

search
th
at

in
corporates

h
euristics

an
d
proce-

dures
inspired

by
naturalevolution

(37).A
t
each

iteration
,param

eter
vectors

(“gen
otypes”)

in
a

population
are

perturbed
(“m

utated”)
and

their
objective

fun
ction

value
(“fitn

ess”)
evaluated.

E
S
h
as

been
liken

ed
to

h
ill-clim

bin
g
in

h
igh

-
d
im

en
sion

al
sp
ace,

follow
in
g
th
e
n
u
m
erical

finite
difference

across
param

eters
thatare

m
ore

su
ccessfu

lat
op

tim
izin

g
th
e
fitn

ess.W
ith

ap
-

p
rop

riately
d
esign

ed
gen

otyp
es

an
d

m
u
ta-

tion
op

eration
s,E

S
can

be
qu

ite
su

ccessfu
lat

h
ard

optim
ization

problem
s,even

overcom
in
g

state-of-the-artm
achine

learning
approaches

(38).
In

oth
er

cases,in
verse

design
is

realized
by

in
corp

oratin
g
exp

ert
kn

ow
led

ge
in
to

th
e
op

-
tim

ization
procedure,

via
im

proved
B
ayesian

sam
p
lin

g
w
ith

sequ
en

tial
M
on

te
C
arlo

(39),
in
vertible

system
H
am

ilton
ian

s
(18),

derivin
g

an
alytical

gradien
ts

of
properties

w
ith

respect
to

a
m
olecular

system
(40),optim

izing
potential

energy
surfaces

of
chem

icalsystem
s
(41),or

dis-
covering

design
patterns

via
data-m

ining
tech-

n
iques

(42,43).
Finally,another

approach
involves

generative
m
odels

stem
m
in
g
from

th
e
field

of
m
ach

in
e

learn
in
g.

B
efore

delvin
g
in
to

th
e
details,

it
is

appropriate
to

highlightthe
differences

betw
een

gen
erative

an
d
discrim

in
ative

m
odels.

A
dis-

crim
inative

m
odeltries

to
determ

ine
conditional

probabilities
(p(y|x)):th

at
is,th

e
probability

of
observin

g
properties

y
(such

as
th
e
ban

dgap
en

ergy
or

solvation
en

ergy),
given

x
(a

m
ole-

cular
represen

tation
).B

y
con

trast,a
gen

erative
m
odelattem

pts
to

determ
ine

a
joint

probability
distribution

p(x,y):the
probability

ofobservin
g

both
the

m
olecular

representation
and

the
phys-

ical
property.

B
y
con

dition
in
g
th
e
probability

on
a
m
olecule

(x)
or

a
property

(y),w
e
retrieve

th
e
n
otion

ofdirect
(p(y|x))an

d
in
verse

design
(p(x|y)).
A
s
expected,deep

generative
m
odels

are
m
ore

challenging
to

create
than

directM
L
approaches,

but
D
L
algorithm

s
and

com
putationalstrategies

have
advanced

substantially
in

the
lastfew

years,
producin

g
aston

ish
in
g
results

for
gen

eratin
g

n
atural-looking

im
ages

(44),con
structin

g
high

-
quality

audio
w
aveform

s
con

tain
in
g
speech

(45),
gen

eratin
g
coh

eren
t
an

d
stru

ctu
red

text
(46),

an
d
m
ost

recen
tly,d

esign
in
g
m
olecu

les
(47).

T
h
ere

are
severalw

ays
ofbu

ild
in
g
gen

erative
m
odels,butfor

th
e
purposes

ofth
is
R
eview

,w
e

w
illfocus

on
three

m
ain

approaches:variation
al

autoencoders
(V
A
E
s)
(48),reinforcem

ent
learn

-
in
g
(R

L
)
(49),an

d
gen

erative
adversarial

n
et-

w
orks

(G
A
N
s)

(44).
B
efore

describing
how

each
approach

differs,
w
e
consider

representations
ofm

olecules,w
hich

in
turn

determ
ine

the
types

oftools
available

and
the

types
ofinform

ation
that

can
be

exploited
in

the
m
odels.

R
ep

resen
tatio

n
of

m
olecu

les

T
o
m
odelm

olecular
system

s
accurately,w

e
m
ust

solve
th
e
Sch

rödin
ger

equation
(SE

)
for

th
e

m
olecular

electron
ic
H
am

ilton
ian

,from
w
h
ich

w
e
obtain

properties
relating

to
the

energy,geom
-

etry,
an

d
cu

rvatu
re

of
th
e
p
oten

tial
en

ergy
su

rface
ofou

r
system

.In
th
e
SE

,th
e
m
olecu

le
is
rep

resen
ted

as
a
set

ofn
u
clear

ch
arges

an
d

th
e
corresp

on
d
in
g
C
artesian

coord
in
ates

of
th
e
atom

ic
p
osition

s
in

3D
sp
ace.M

ean
w
h
ile,

San
ch

ez-L
en

gelin
g
et

al.,Scien
ce

361,360–365
(2018)

27
July

2018
2
of

6

Fig
.2.S

ch
em

atic
of

th
e
d
ifferen

t
ap

p
roach

es
tow

ard
m
olecu

lar
d
esig

n
.Inverse

design
starts

from
desired

properties
and

ends
in

chem
icalspace,unlike

the
direct

approach
that

leads
from

chem
icalspace

to
the

properties.

IMAGE: ADAPTED BY K. HOLOSKI

on June 4, 2020 http://science.sciencemag.org/ Downloaded from

tim
e
b
etw

een
step

s.
T
h
e
u
ltim

ate
aim

is
to

con
curren

tly
propose,

create,
an

d
characterize

n
ew

m
aterials,w

ith
each

com
pon

en
t
tran

sm
itt-

in
g

an
d

receivin
g

d
ata

sim
u
ltan

eou
sly.

T
h
is

process
is
called

“closin
g
th
e
loop,”

an
d
in
verse

d
esign

is
a
criticalfacet

(12,15).

In
verse

d
esig

n

Q
u
an

tu
m

ch
em

ical
m
eth

od
s
reveal

properties
of

a
m
olecu

lar
system

on
ly

after
specifyin

g
th
e

essen
tialparam

eters
of

th
e
con

stitu
en

t
atom

ic
n
u
clei

an
d
th
eir

th
ree-d

im
en

sion
al

(3D
)
coor-

din
ate

positions
(16).In

verse
design

,as
its

n
am

e
suggests,in

verts
this

paradigm
by

startin
g
w
ith

th
e
d
esired

fu
n
ction

ality
an

d
search

in
g
for

an
ideal

m
olecular

structure.H
ere

the
in
put

is
the

fu
n
ction

ality
an

d
th
e
ou

tp
u
t
is

th
e
stru

ctu
re.

F
u
n
ction

ality
n
eed

n
ot

n
ecessarily

m
ap

to
on

e
u
n
iqu

e
stru

ctu
re

bu
t
to

a
d
istribu

tion
of

prob-
ab

le
stru

ctu
res.

In
verse

d
esign

(F
ig.

2)
uses

optim
ization

,
sam

plin
g,

an
d

search
m
eth

od
s

to
n
avigate

th
e
m
an

ifold
of

fu
n
ction

ality
of

ch
em

ical
sp

ace
(17,

18).
O
n
e
of

th
e
earliest

efforts
in

in
verse

d
esign

w
as

the
m
ethodology

ofhigh-throughput
virtual

screen
in
g
(H

T
V
S).

H
T
V
S
h
as

its
roots

in
th
e

pharm
aceuticalindustry

for
drug

discovery,w
here

sim
ulation

is
an

exploratory
toolfor

screening
a

large
n
um

ber
of

m
olecules

(19,20).H
T
V
S
starts

w
ith

an
in
itial

library
of

m
olecules

built
on

the
basis

of
research

ers’in
tu
ition

,
w
h
ich

n
arrow

s
d
ow

n
th
e
poolof

possible
can

d
id
ate

m
olecu

les
to

a
tractable

ran
ge

of
a
th
ou

san
d
to

a
m
illion

.
In
itial

can
d
id
ates

are
filtered

on
th
e
basis

of
focu

sed
targets

su
ch

as
ease

of
syn

th
esis,

sol-
ubility,toxicity,stability,activity,and

selectivity.
M
olecu

les
are

also
filtered

by
expert

opin
ion

,
even

tu
ally

con
sid

ered
as

poten
tial

lead
com

-
pou

n
d
s
for

organ
ic
syn

th
esis.Su

ccessfu
lm

otifs
an

d
su
bstru

ctu
res

are
fu
rth

er
in
corporated

in
fu
tu
re

cycles
to

fu
rth

er
optim

ize
fu
n
ction

ality.
A
lthough

H
T
V
S
m
ight

seem
like

an
en

sem
ble

version
of

th
e

d
irect

approach
for

m
aterial

d
esign

,
it

d
iffers

in
its

u
n
d
erlyin

g
ph

ilosoph
y

(4).H
T
V
S
is
focu

sed
on

d
ata-d

riven
d
iscovery,

w
hich

incorporates
autom

ation,tim
e-criticalper-

form
ance,and

com
putationalfunnels;prom

ising
can

d
id
ates

are
fu
rth

er
processed

by
m
ore

ex-
pen

sive
m
eth

od
ologies.A

cru
cialcom

pon
en

t
is

feed
back

betw
een

th
eory

an
d
experim

en
t.

T
h
e
H
T
V
S
m
eth

od
ology

h
as

been
qu

ite
su
c-

cessfu
latgen

eratin
g
n
ew

an
d
h
igh

-perform
in
g

m
aterials

in
oth

er
d
om

ain
s.In

organ
ic

ph
oto-

voltaics,m
olecu

les
h
ave

been
screen

ed
on

th
e

basis
offron

tier
orbitalenergies

an
d
photovoltaic

conversion
efficiency

and
orbitalenergies

(21–24).
In

organ
ic
red

ox
flow

batteries,red
ox

poten
tial,

solu
bility,

an
d

ease
of

syn
th
esis

(25,
26)

are
prioritized

.
F
or

organ
ic

ligh
t-em

ittin
g
d
iod

es,
m
olecu

les
h
ave

been
screen

ed
for

th
eir

sin
glet-

triplet
gap

an
d
photolum

in
escen

t
em

ission
(27).

M
assive

exploration
s
of

reaction
s
for

catalysis
(28)

or
red

ox
poten

tials
in

bioch
em

istry
h
ave

been
u
n
d
ertaken

(28).F
or

in
organ

ic
m
aterials,

th
e
M
aterials

P
roject

(29)
spaw

n
s
m
an

y
appli-

cation
s
su
ch

as
d
ielectric

an
d
opticalm

aterials
(30),

ph
otoan

od
e
m
aterials

for
gen

eration
of

ch
em

ical
fu
els

from
su
n
ligh

t
(31),

an
d
battery

electrolytes
(32).

A
rgu

ably,an
optim

ization
approach

is
pref-

erab
le

to
H
T
V
S
b
ecau

se
it

gen
erally

visits
a

sm
aller

n
u
m
b
er

of
con

figu
ration

s
w
h
en

ex-
p
lorin

g
th
e
m
an

ifold
of

fu
n
ction

ality.A
n
op

-
tim

ization
in
corp

orates
an

d
learn

s
geom

etric
inform

ation
ofthe

functionality
m
anifold,guided

by
gen

eraltrends,directions,and
curvature

(17).
W
ithin

discrete
optim

ization
m
ethods,E

volu-
tion

Strategies
(E
S)is

a
popular

choice
for

global
optim

ization
(33–35)

an
d
has

been
used

to
m
ap

ch
em

ical
space

(36).
E
S
in
volves

a
stru

ctu
red

search
th
at

in
corporates

h
eu

ristics
an

d
proce-

dures
in
spired

by
n
aturalevolution

(37).A
t
each

iteration
,param

eter
vectors

(“gen
otypes”)

in
a

population
are

perturbed
(“m

utated”)
an

d
their

objective
fu
n
ction

valu
e
(“fitn

ess”)
evalu

ated
.

E
S
h
as

b
een

liken
ed

to
h
ill-clim

bin
g
in

h
igh

-
d
im

en
sion

al
sp
ace,

follow
in
g
th
e
n
u
m
erical

fin
ite

differen
ce

across
param

eters
thatare

m
ore

su
ccessfu

lat
op

tim
izin

g
th
e
fitn

ess.W
ith

ap
-

p
rop

riately
d
esign

ed
gen

otyp
es

an
d

m
u
ta-

tion
op

eration
s,E

S
can

b
e
q
u
ite

su
ccessfu

lat
h
ard

optim
ization

problem
s,even

overcom
in
g

state-of-the-artm
achine

learning
approaches

(38).
In

oth
er

cases,in
verse

d
esign

is
realized

by
in
corp

oratin
g
exp

ert
kn

ow
led

ge
in
to

th
e
op

-
tim

ization
proced

u
re,

via
im

proved
B
ayesian

sam
p
lin

g
w
ith

seq
u
en

tial
M
on

te
C
arlo

(39),
in
vertible

system
H
am

ilton
ian

s
(18),

d
erivin

g
an

alytical
grad

ien
ts

of
properties

w
ith

respect
to

a
m
olecular

system
(40),optim

izin
g
potential

energy
surfaces

of
chem

icalsystem
s
(41),or

dis-
coverin

g
design

pattern
s
via

data-m
in
in
g
tech-

n
iqu

es
(42,43).

F
in
ally,an

other
approach

in
volves

gen
erative

m
od

els
stem

m
in
g
from

th
e
field

of
m
ach

in
e

learn
in
g.

B
efore

d
elvin

g
in
to

th
e
d
etails,

it
is

appropriate
to

highlight
the

differen
ces

betw
een

gen
erative

an
d
d
iscrim

in
ative

m
od

els.
A

d
is-

crim
in
ative

m
odeltries

to
determ

in
e
con

dition
al

probabilities
(p(y|x)):th

at
is,th

e
probability

of
observin

g
properties

y
(su

ch
as

th
e
ban

d
gap

en
ergy

or
solvation

en
ergy),

given
x
(a

m
ole-

cu
lar

represen
tation

).B
y
con

trast,a
gen

erative
m
odelattem

pts
to

determ
in
e
a
join

t
probability

d
istribution

p(x,y):the
probability

ofobservin
g

both
the

m
olecular

representation
and

the
phys-

ical
property.

B
y
con

d
ition

in
g
th
e
probability

on
a
m
olecu

le
(x)

or
a
property

(y),w
e
retrieve

th
e
n
otion

ofd
irect

(p
(y|x))

an
d
in
verse

d
esign

(p(x|y)).
A
s
expected,deep

gen
erative

m
odels

are
m
ore

challen
gin

g
to

create
than

directM
L
approaches,

but
D
L
algorithm

s
an

d
com

putation
alstrategies

have
advan

ced
substan

tially
in

the
lastfew

years,
prod

u
cin

g
aston

ish
in
g
resu

lts
for

gen
eratin

g
n
atural-lookin

g
im

ages
(44),con

stru
ctin

g
high

-
qu

ality
aud

io
w
aveform

s
con

tain
in
g
speech

(45),
gen

eratin
g
coh

eren
t
an

d
stru

ctu
red

text
(4
6),

an
d
m
ost

recen
tly,d

esign
in
g
m
olecu

les
(47).

T
h
ere

are
severalw

ays
ofb

u
ild

in
g
gen

erative
m
od

els,bu
tfor

th
e
pu

rposes
ofth

is
R
eview

,w
e

w
illfocu

s
on

three
m
ain

approaches:variation
al

autoencoders
(V
A
E
s)
(48),rein

forcem
ent

learn
-

in
g
(R

L
)
(49),

an
d
gen

erative
ad

versarial
n
et-

w
orks

(G
A
N
s)

(44).
B
efore

describin
g
how

each
approach

differs,
w
e
con

sider
represen

tation
s
ofm

olecules,w
hich

in
turn

determ
ine

the
types

oftools
available

an
d

the
types

ofin
form

ation
that

can
be

exploited
in

the
m
odels.

R
ep

resen
tatio

n
o
f
m
o
lecu

les

T
o
m
odelm

olecular
system

s
accurately,w

e
m
ust

solve
th
e
Sch

röd
in
ger

equ
ation

(SE
)
for

th
e

m
olecu

lar
electron

ic
H
am

ilton
ian

,from
w
h
ich

w
e
obtain

properties
relating

to
the

energy,geom
-

etry,
an

d
cu

rvatu
re

of
th
e
p
oten

tial
en

ergy
su

rface
ofou

r
system

.In
th
e
SE

,th
e
m
olecu

le
is
rep

resen
ted

as
a
set

of
n
u
clear

ch
arges

an
d

th
e
corresp

on
d
in
g
C
artesian

coord
in
ates

of
th
e
atom

ic
p
osition

s
in

3D
sp
ace.M

ean
w
h
ile,

San
ch

ez-L
en

gelin
g
et

al.,Scien
ce

36
1,360

–365
(2018)

27
Ju

ly
2018

2
of

6

Fig
.2

.S
ch

em
atic

o
f
th

e
d
ifferen

t
ap

p
ro

ach
es

to
w
ard

m
o
lecu

lar
d
esig

n
.Inverse

design
starts

from
desired

properties
and

ends
in

chem
icalspace,unlike

the
direct

approach
that

leads
from

chem
icalspace

to
the

properties.

IMAGE: ADAPTED BY K. HOLOSKI

on June 4, 2020 http://science.sciencemag.org/ Downloaded from

x

E
𝜃 (x,y)

A
lg

𝜙 (E
𝜃 (x,・

))

reasoning moduleneural module

Figure 1. Hybrid architecture

ture are optimized end-to-end with loss gradients (Fig 1).
Very often these reasoning modules can be implemented
as unrolled iterative algorithms, which can solve more so-
phisticated tasks with carefully designed and interpretable
operations. For instance, SATNet [1] integrated a satisfi-
ability solver into its deep model as a reasoning module;
E2Efold [2] used a constrained optimization algorithm on
top of a neural energy network to predict and reasoning
about RNA structures. [3] used optimal transport algorithm
as a reasoning module for learning to sort. Other algorithms
such as ADMM [4, 5], Langevin dynamics [6], inductive
logic programming [7], DP [8], k-means clustering [9], be-
lief propagation [10], power iterations [11] are also used as
differentiable reasoning modules in deep models for various
learning tasks. Thus in the reminder of the paper, we will
use reasoning layer and algorithm layer interchangeably.

While these previous works have demonstrated the effective-
ness of combining deep learning with reasoning, theoretical
understandings of such hybrid deep architectures remain
largely unexplored. For instance, what is the benefit of us-
ing a reasoning module based on unrolled algorithms com-
pared to generic architectures such as RNN? How exactly
will the reasoning module affect the generalization ability
of the deep architecture? For different algorithms which
can solve the same task, what are their differences when
used as reasoning modules in deep models? Despite the rich
literature on rigorous analysis of algorithm properties, there
is a paucity of work leveraging these analyses to formally
study the learning behavior of deep architectures containing
algorithm layers. This motivates us to ask the intriguing and
timely question of

How will the algorithm properties of a reasoning
layer affect the learning behavior of deep archi-

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Understanding Deep Learning with Reasoning Layer

tectures containing such layers?

In this paper, we provide a first step toward an answer to this
question by analyzing the approximation and generalization
abilities of such hybrid deep architectures. To the best our
knowledge, such analysis has not been done before and is
challenging in the sense that: 1) The analysis of certain
algorithm properties such as convergence can be complex
by itself; 2) Models based on highly structured iterative
algorithms have rarely been analyzed before; 3) The bound
needs to be sharp enough to match empirical observations.
In this new setting, the complexity of algorithm analysis
and generalization analysis intertwined together, making the
analysis even more challenging.

Summary of results. We find that standard Rademacher
complexity analysis, widely used for neural networks [12,
13, 14], becomes insufficient for explaining behaviors of
hybrid architectures. Thus we resort to a more refined local
Rademacher complexity analysis [15, 16], and find that:

• Relation to algorithm properties. Algorithm properties
such as convergence, stability and sensitivity all play impor-
tant roles in generalization ability of the hybrid architecture.
Generally speaking, an algorithm layer that is faster con-
verging, more stable and less sensitive will be able to better
approximate the joint perception and reasoning task, while
at the same time generalize better.
• Which algorithm? The tradeoff is that a faster converg-
ing algorithm has to be less stable [17]. Therefore, depend-
ing on the actual scenarios, the choice of a better algorithm
layer can be different. Our theorem reveals that when the
neural module is over- or under-parameterized, stability
of the algorithm layer can be more important than its con-
vergence; but when the neural module is about-the-right-
parameterized, a faster converging algorithm layer may give
a better generalization.
• What depth? With deeper algorithm layers, the repre-
sentation ability gets better, but the generalization becomes
worse if the neural module is over/under-parameterized.
Only when it has about-the-right complexity, deeper al-
gorithm layers can induce both better representation and
generalization.
• What if RNN? It has been shown that RNN/GNN can
also represent reasoning and iterative algorithms [18, 14].
We use RNN as an example in Appendix B to demonstrate
that these generic reasoning modules can also be analyzed
under our framework, which explains that RNN layers in-
duce a better representation power but a worse generaliza-
tion ability compared to traditional algorithm layers.
• Experiments. We conduct empirical experiments to val-
idate our theory and show that it matches nicely with ex-
perimental observations under various conditions. These
results suggest that our theory can provide useful practical
guidelines for designing deep architectures with reasoning
layers. Experimental results are presented in Appendix C.

Contributions and limitations. To the best of our knowl-
edge, this is the first result to quantitatively characterize the
effects of algorithm properties on the learning behavior of
hybrid deep architectures with reasoning layers. Our result
reveals an intriguing and previously unknown interplay and
tradeoff between algorithm convergence, stability and sensi-
tivity on the model generalization, and thus provides design
principles for deep architectures with reasoning layers. To
simplify analysis, our initial study is limited to a setting
where the reasoning module is an unconstrained optimiza-
tion algorithm and the neural module outputs a quadratic
energy function. However, our analysis framework can be
extended to more complicated case and the insights will
apply beyond our current setting.

Related theoretical works. Our analysis borrows proof
techniques for analyzing algorithm properties from the opti-
mization literature [17, 19] and for bounding Rademacher
complexity from the statistical learning literature [12, 15, 16,
20, 21], but our focus and results are new. More precisely,
the ‘leave-one-out’ stability of optimization algorithms has
been used to derive generalization bounds [22, 23, 24, 17,
25, 26]. However, all existing analyses are in the context
where the optimization algorithms are used to train and
select the model, while our analysis is based on a funda-
mentally different viewpoint where the algorithm itself is
unrolled and integrated as a layer in the deep model. Also,
existing works on the generalization of deep learning mainly
focus on generic neural architectures such as feed-forward
neural network, recurrent neural network, graph neural net-
work, etc [12, 13, 14]. Complexity of models based on
highly structured iterative algorithms and the relation to
algorithm properties have not been investigated. Further-
more, we are not aware of previous use of local Rademacher
complexity analysis in this context.

2. Setting: Optimization Algorithms as
Reasoning Modules

Very often reasoning can be accomplished by solving an
optimization problem defined by a neural perceptual mod-
ule. For instance, visual SUDOKU puzzle can be solved
using a neural module to perceive the digits and then us-
ing a quadratic optimization module to maximize a logic
satisfiability objective [1]. RNA folding problem can be
tackled using a neural energy model to capture pairwise
relations between RNA bases and a constrained optimiza-
tion module to minimize the energy with additional pairing
constraints to obtain a folding [2]. In a broader context,
MAML [27, 28] also has a neural module for joint initial-
ization and a reasoning module that performs optimization
steps for task-specific adaptation. Other examples include
[29, 6, 30, 31, 32, 33, 34].

As an initial attempt to analyze deep architectures with

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Understanding Deep Learning with Reasoning Layer

reasoning layers, we will restrict our analysis to a simple
case where Eθ(x,y) in Fig.1 is quadratic in y. A reason is
that the analysis of advanced algorithms such as Nesterov
accelerated gradients will become very complex for general
cases. Similar problems occur in [17] which also restricts
the proof to quadratic objectives. Specifically:

Problem Setting: Consider a hybrid architecture where
the neural module is an energy function in form of
Eθ((x, b),y) = 1

2y
>Qθ(x)y + b>y, where Qθ is a neu-

ral network that maps x to a matrix. Each energy can be
uniquely represented by (Qθ(x), b), so we can write the
overall architecture as

fφ,θ(x, b) := Algkφ(Qθ(x), b). (1)

Given samples Sn = {((x1, b1),y∗1), · · · , ((xn, bn),y∗n)},
where the labels y∗ are given by the exact minimizer Opt
of the corresponding Q∗, i.e., y∗ = Opt(Q∗(x), b), the
learning problem is to find the best model fφ,θ from the
space F := {fφ,θ : (φ, θ) ∈ Φ × Θ} by minimizing the
empirical loss function

minfφ,θ∈F
1
n

∑n
i=1`φ,θ(xi, bi), where (2)

`φ,θ(x, b) := ‖Algkφ (Qθ(x), b)− Opt(Q∗(x), b)‖2. Fur-
thermore, we assume:

• BothQθ andQ∗ mapX to Sd×dµ,L where Sd×dµ,L is the space
of symmetric positive definite (SPD) matrices with µ and L
as its smallest and largest singular values. Thus the induced
energy functionEθ will be µ-strongly convex andL-smooth,
and the output of Opt is unique.
• The input (x, b) is a pair of random variables where x ∈
X ⊆ Rm and b ∈ B ⊆ Rd. Assume b has mean E[b] = 0
and variance Σb = σ2

b I . Assume x and b are independent,
and their joint distribution follows a probability measure P .
Assume samples in Sn are drawn i.i.d. from P .
• Assume B is bounded, and let M =
sup(Q,b)∈Sd×dµ,L ×B

‖Opt(Q, b)‖2.

Though this setting does not encompass the full complexity
of hybrid deep architectures, it already reveals interesting
connections between algorithm properties of the reasoning
module and the learning behaviors of hybrid architectures.

3. Properties of Algorithms
In this section, we formally define the algorithm properties
of the reasoning module Algkφ, under the problem setting
presented in Sec 2. After that, we compare the correspond-
ing properties of gradient descent, GDkφ, and Nesterov’s
accelerated gradients, NAGkφ, as concrete examples.

(I) Convergence rate of an algorithm portrays how fast
the optimization error decreases as k grows. Formally,
we say Algkφ has a convergence rate Cvg(k, φ) if for

any Q ∈ Sd×dµ,L , b ∈ B, ‖Algkφ(Q, b) − Opt(Q, b)‖2 ≤
Cvg(k, φ)‖Alg0

φ(Q, b)− Opt(Q, b)‖2.

(II) Stability of an algorithm characterizes its robustness to
small perturbations in the optimization objective, which cor-
responds to the perturbation ofQ and b in the quadratic case.
For the purpose of this paper, we say an algorithm Algkφ
is Stab(k, φ)-stable if for any Q,Q′ ∈ Sd×dµ,L and b, b′ ∈ B,
‖Algkφ(Q, b)−Algkφ(Q′, b′)‖2 ≤ Stab(k, φ)‖Q−Q′‖2 +
Stab(k, φ)‖b− b′‖2, where ‖Q−Q′‖2 is the spectral norm
of the matrix Q−Q′.

(III) Sensitivity characterizes the robustness to small pertur-
bations in the algorithm parameters φ. We say the sensitiv-
ity of Algkφ is Sens(k) if it holds for all Q ∈ Sd×dµ,L , b ∈ B,
and φ, φ′ ∈ Φ that ‖Algkφ(Q, b) − Algkφ′(Q, b)‖2 ≤
Sens(k)‖φ − φ′‖2. This concept is referred in the deep
learning community to “parameter perturbation error” or
“sharpness” [35, 36, 37]. It has been used for deriving
generalization bounds of neural networks, both in the
Rademacher complexity framework [12] and PAC-Bayes
framework [38].

(IV) Stable region is the range Φ of the parameters φwhere
the algorithm output will remain bounded as k grows to
infinity, i.e., numerically stable. Only when the algorithms
operate in the stable region, the corresponding Cvg(k, φ),
Stab(k, φ) and Sens(k) will remain finite for all k. It is
usually very difficult to identity the exact stable region, but
a sufficient range can be provided.

GD and NAG. Now we will compare the above four algo-
rithm properties for gradient descent and Nesterov’s accel-
erated gradient method, both of which can be used to solve
the quadratic optimization in our problem setting. Let GDφ
and NAGφ denote the algorithm update steps of GD and
NAG, where the hyperparameter φ corresponds to the step
size. Denote the results of k-step update of GD and NAG
by GDkφ(Q, b) and NAGkφ(Q, b), respectively. The initializa-
tions in the algorithms are set to be zero vectors throughout
this paper. Then their algorithm properties are summarized
in Table 2 in Appendix D, which shows (i) Convergence:
NAG converges faster than GD. (ii) Stability: However, as k
grows, NAG is less stable than GD for a fixed k, in contrast
to their convergence behaviors. This is pointed out in [17],
which proves that a faster converging algorithm has to be
less stable. (iii) Sensitivity: The sensitivity behaves similar
to the convergence, where NAG is less sensitive to step-size
perturbation than GD. Also, the sensitivity of both algo-
rithms gets smaller as k grows larger. (iv): Stable region:
The stable region of GD is larger than that of NAG. It means
a larger step size is allowable for GD that will not lead to
exploding outputs even if k is large. Note that all the other
algorithm properties are based on the assumption that φ is
in the stable region Φ. Furthermore, as k →∞, the space

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Understanding Deep Learning with Reasoning Layer

Theorem 3.1. Assume the problem setting in Sec 2. Then we have for any t > 0, it holds true that

ERn`locF (r) ≤
√

2dn−
1
2 Stab(k)

(√
(Cvg(k)M +

√
r)2C1(n) + C2(n, t) + C3(n, t) + 4

)
+ Sens(k)BΦ, (3)

where BΦ = 1
2 supφ,φ′∈Φ ‖φ− φ′‖2, Stab(k) = supφ Stab(k, φ), Cvg(k) = supφ Cvg(k, φ), and Ci are constants monotone

in the covering number N (1√
n
, `Q, L∞) of `Q with radius 1√

n
and L∞ norm. We refer their exact definitions to Appendix F.

{Algkφ : φ ∈ Φ} will finally shrink to a single function,
which is the exact minimizer {Opt}.

How will the algorithm properties affect the learning behav-
ior of deep architecture with reasoning layers? We provide
the approximation ability analysis in Appendix A and the
generalization analysis in the next section.

4. Generalization Ability
How will algorithm properties affect the generalization
ability of deep architectures with reasoning layers? We
are interested in the generalization gap between the ex-
pected loss and empirical loss, P`φ,θ = Ex,b`φ,θ(x, b)
and Pn`φ,θ = 1

n

∑n
i=1`φ,θ(xi, bi), respectively, where

Pn is the empirical probability measure induced by the
samples Sn. Let `F := {`φ,θ : φ ∈ Φ, θ ∈ Θ} be
the function space of losses of the models. The gener-
alization gap, P`φ,θ − Pn`φ,θ, can be bounded by the
Rademacher complexity, ERn`F , which is defined as
the expectation of the empirical Rademacher complexity,
Rn`F := Eσ supφ∈Φ,θ∈Θ

1
n

∑n
i=1 σi`φ,θ(xi, bi), where

{σi}ni=1 are n independent Rademacher random variables
uniformly distributed over {±1}. Generalization bounds
derived from Rademacher complexity have been studied in
many works [39, 40, 41].

Main Results: [Theorem 3.1]. More specifically, the lo-
cal Rademacher complexity of `F at level r is defined
as ERn`locF (r) where `locF (r) := {`φ,θ : φ ∈ Φ, θ ∈
Θ, P `2φ,θ ≤ r}. This notion is less general than the one
defined in [15, 16] but is sufficient for our purpose. Here we
also define a losses function space `Q := {‖Qθ − Q∗‖F :
θ ∈ Θ} for the neural module Qθ. With these definitions,
Theorem 3.1 shows that the local Rademacher complexity
of the hybrid architecture is intimately related to all aspects
of algorithm properties, namely convergence, stability and
sensitivity, and there is an intriguing trade-off.

Trade-offs between convergence, stability and sensitiv-
ity. Generally speaking, the algorithm convergence Cvg(k)
and sensitivity Sens(k) have similar behavior, but Stab(k)
behaves opposite to them. See illustrations in Fig 2. There-
fore, the way these three quantities interplay in Theorem 3.1
introduces an intriguing trade-off among them, suggesting
in different regime, one may see different generalization
behavior. More specially, depending on the parameteriza-
tion of Qθ, the coefficients C1, C2, and C3 in Eq. 3 may

have different scale, making the local Rademacher com-
plexity bound dominated by different algorithm properties.
Since the coefficients Ci are monotonely increasing in the
covering number of `Q, we expect that: (i) WhenQθ is over-
parameterized, the covering number of `Q becomes large, so
as the three coefficients. Large Ci will reduce the effect of
Cvg(k) and make Eq. 3 dominated by Stab(k); (ii) Inversely,
when Qθ is under-parameterized, the three coefficients get
small, but they still reduce the effect of Cvg(k) given the
constant 4 in Eq. 3, again making it dominated by Stab(k);
(iii) When Qθ has about-the-right parameterization, we
can expect Cvg(k) to play critical roles in Eq. 3 which will
then behave similar to the product Stab(k)Cvg(k), as illus-
trated schematically in Fig 2. We experimentally validate
these implications in Sec C.

Conv(k) or Sens(k)
GD
NAG

Stab(k)
GD
NAG

Conv(k) * Stab(k)
GD
NAG

Figure 2. Overall trend of algorithm properties.

Trade-off of the depth. Combining the above implications
with the approximation ability analysis in Sec A, we can
see that in the above-mentioned cases (i) and (ii), deeper
algorithm layers will lead to better approximation accuracy
but worse generalization. Only in the ideal case (iii), a
deeper reasoning module can induce both better representa-
tion and generalization abilities. This result provides prac-
tical guidelines for some recently proposed infinite-depth
models [42, 43].

5. Conclusion and Discussion
In this paper, we take an initial step toward the theoretical
understanding of deep architectures with reasoning layers.
Our theorem indicates intriguing relation between algorithm
properties of the reasoning module and the approximation
and generalization of the hybrid architecture, which in turns
provide practical guideline for designing reasoning layers.
The assumptions we made in the problem setting are only for
avoiding the non-uniqueness of the reasoning solution and
the instability of the mapping from the reasoning solution
to the neural module. The assumptions could be relaxed if
we can involve other techniques to resolve these issues.

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Understanding Deep Learning with Reasoning Layer

References
[1] Po-Wei Wang, Priya Donti, Bryan Wilder, and Zico

Kolter. Satnet: Bridging deep learning and logical
reasoning using a differentiable satisfiability solver. In
International Conference on Machine Learning, pages
6545–6554, 2019.

[2] Xinshi Chen, Yu Li, Ramzan Umarov, Xin Gao,
and Le Song. Rna secondary structure prediction
by learning unrolled algorithms. arXiv preprint
arXiv:2002.05810, 2020.

[3] Marco Cuturi, Olivier Teboul, and Jean-Philippe Vert.
Differentiable sorting using optimal transport: The
sinkhorn cdf and quantile operator. arXiv preprint
arXiv:1905.11885, 2019.

[4] Harsh Shrivastava, Xinshi Chen, Binghong Chen,
Guanghui Lan, Srinivas Aluru, Han Liu, and Le Song.
GLAD: Learning sparse graph recovery. In Interna-
tional Conference on Learning Representations, 2020.

[5] Y Yang, J Sun, H Li, and Z Xu. Admm-net: A deep
learning approach for compressive sensing mri. corr.
arXiv preprint arXiv:1705.06869, 2017.

[6] John Ingraham, Adam Riesselman, Chris Sander, and
Debora Marks. Learning protein structure with a dif-
ferentiable simulator. In International Conference on
Learning Representations, 2019.

[7] Robin Manhaeve, Sebastijan Dumancic, Angelika
Kimmig, Thomas Demeester, and Luc De Raedt. Deep-
problog: Neural probabilistic logic programming. In
Advances in Neural Information Processing Systems,
pages 3749–3759, 2018.

[8] Arthur Mensch and Mathieu Blondel. Differentiable
dynamic programming for structured prediction and at-
tention. In 35th International Conference on Machine
Learning, volume 80, 2018.

[9] Bryan Wilder, Eric Ewing, Bistra Dilkina, and Milind
Tambe. End to end learning and optimization on
graphs. In Advances in Neural Information Processing
Systems, pages 4674–4685, 2019.

[10] Justin Domke. Parameter learning with truncated
message-passing. In CVPR 2011, pages 2937–2943.
IEEE, 2011.

[11] Wei Wang, Zheng Dang, Yinlin Hu, Pascal Fua, and
Mathieu Salzmann. Backpropagation-friendly eigen-
decomposition. In Advances in Neural Information
Processing Systems, pages 3156–3164, 2019.

[12] Peter L Bartlett, Dylan J Foster, and Matus J Telgarsky.
Spectrally-normalized margin bounds for neural net-
works. In Advances in Neural Information Processing
Systems, pages 6240–6249, 2017.

[13] Minshuo Chen, Xingguo Li, and Tuo Zhao. On gen-
eralization bounds of a family of recurrent neural net-
works. arXiv preprint arXiv:1910.12947, 2019.

[14] Vikas K Garg, Stefanie Jegelka, and Tommi Jaakkola.
Generalization and representational limits of graph
neural networks. arXiv preprint arXiv:2002.06157,
2020.

[15] Peter L Bartlett, Olivier Bousquet, Shahar Mendelson,
et al. Local rademacher complexities. The Annals of
Statistics, 33(4):1497–1537, 2005.

[16] Vladimir Koltchinskii et al. Local rademacher com-
plexities and oracle inequalities in risk minimization.
The Annals of Statistics, 34(6):2593–2656, 2006.

[17] Yuansi Chen, Chi Jin, and Bin Yu. Stability and con-
vergence trade-off of iterative optimization algorithms.
arXiv preprint arXiv:1804.01619, 2018.

[18] Marcin Andrychowicz, Misha Denil, Sergio Gomez,
Matthew W Hoffman, David Pfau, Tom Schaul, Bren-
dan Shillingford, and Nando De Freitas. Learning
to learn by gradient descent by gradient descent. In
Advances in Neural Information Processing Systems,
pages 3981–3989, 2016.

[19] Yurii Nesterov. Introductory lectures on convex opti-
mization: A basic course, volume 87. Springer Science
& Business Media, 2013.

[20] Andreas Maurer. A vector-contraction inequality for
rademacher complexities. In International Conference
on Algorithmic Learning Theory, pages 3–17. Springer,
2016.

[21] Corinna Cortes, Vitaly Kuznetsov, Mehryar Mohri,
and Scott Yang. Structured prediction theory based
on factor graph complexity. In Advances in Neural
Information Processing Systems, pages 2514–2522,
2016.

[22] Olivier Bousquet and André Elisseeff. Stability and
generalization. Journal of machine learning research,
2(Mar):499–526, 2002.

[23] Shivani Agarwal and Partha Niyogi. Generalization
bounds for ranking algorithms via algorithmic stability.
Journal of Machine Learning Research, 10(Feb):441–
474, 2009.

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Understanding Deep Learning with Reasoning Layer

[24] Moritz Hardt, Benjamin Recht, and Yoram Singer.
Train faster, generalize better: Stability of stochas-
tic gradient descent. arXiv preprint arXiv:1509.01240,
2015.

[25] Omar Rivasplata, Emilio Parrado-Hernández, John S
Shawe-Taylor, Shiliang Sun, and Csaba Szepesvári.
Pac-bayes bounds for stable algorithms with instance-
dependent priors. In Advances in Neural Information
Processing Systems, pages 9214–9224, 2018.

[26] Saurabh Verma and Zhi-Li Zhang. Stability and gen-
eralization of graph convolutional neural networks. In
Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining,
pages 1539–1548, 2019.

[27] Chelsea Finn, Pieter Abbeel, and Sergey Levine.
Model-agnostic meta-learning for fast adaptation of
deep networks. In Proceedings of the 34th Interna-
tional Conference on Machine Learning-Volume 70,
pages 1126–1135. JMLR. org, 2017.

[28] Aravind Rajeswaran, Chelsea Finn, Sham M Kakade,
and Sergey Levine. Meta-learning with implicit gradi-
ents. In Advances in Neural Information Processing
Systems, pages 113–124, 2019.

[29] David Belanger, Bishan Yang, and Andrew McCallum.
End-to-end learning for structured prediction energy
networks. In Proceedings of the 34th International
Conference on Machine Learning-Volume 70, pages
429–439. JMLR. org, 2017.

[30] Priya Donti, Brandon Amos, and J Zico Kolter. Task-
based end-to-end model learning in stochastic opti-
mization. In Advances in Neural Information Process-
ing Systems, pages 5484–5494, 2017.

[31] Brandon Amos and J Zico Kolter. Optnet: Differen-
tiable optimization as a layer in neural networks. In
Proceedings of the 34th International Conference on
Machine Learning-Volume 70, pages 136–145. JMLR.
org, 2017.

[32] Marin Vlastelica, Anselm Paulus, Vı́t Musil, Georg
Martius, and Michal Rolı́nek. Differentiation of
blackbox combinatorial solvers. arXiv preprint
arXiv:1912.02175, 2019.

[33] Michal Rolı́nek, Paul Swoboda, Dominik Zietlow,
Anselm Paulus, Vı́t Musil, and Georg Martius. Deep
graph matching via blackbox differentiation of com-
binatorial solvers. arXiv preprint arXiv:2003.11657,
2020.

[34] Quentin Berthet, Mathieu Blondel, Olivier Teboul,
Marco Cuturi, Jean-Philippe Vert, and Francis Bach.
Learning with differentiable perturbed optimizers.
arXiv preprint arXiv:2002.08676, 2020.

[35] Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge
Nocedal, Mikhail Smelyanskiy, and Ping Tak Peter
Tang. On large-batch training for deep learning: Gen-
eralization gap and sharp minima. arXiv preprint
arXiv:1609.04836, 2016.

[36] Kenji Kawaguchi, Leslie Pack Kaelbling, and Yoshua
Bengio. Generalization in deep learning. arXiv
preprint arXiv:1710.05468, 2017.

[37] Behnam Neyshabur, Srinadh Bhojanapalli, David
McAllester, and Nati Srebro. Exploring generalization
in deep learning. In Advances in Neural Information
Processing Systems, pages 5947–5956, 2017.

[38] Behnam Neyshabur, Srinadh Bhojanapalli, and Nathan
Srebro. A PAC-bayesian approach to spectrally-
normalized margin bounds for neural networks. In In-
ternational Conference on Learning Representations,
2018.

[39] Vladimir Koltchinskii and Dmitriy Panchenko.
Rademacher processes and bounding the risk of func-
tion learning. In High dimensional probability II,
pages 443–457. Springer, 2000.

[40] Vladimir Koltchinskii. Rademacher penalties and
structural risk minimization. IEEE Transactions on
Information Theory, 47(5):1902–1914, 2001.

[41] Peter L Bartlett and Shahar Mendelson. Rademacher
and gaussian complexities: Risk bounds and struc-
tural results. Journal of Machine Learning Research,
3(Nov):463–482, 2002.

[42] Shaojie Bai, J Zico Kolter, and Vladlen Koltun. Deep
equilibrium models. In Advances in Neural Informa-
tion Processing Systems, pages 688–699, 2019.

[43] Laurent El Ghaoui, Fangda Gu, Bertrand Travacca,
and Armin Askari. Implicit deep learning. arXiv
preprint arXiv:1908.06315, 2019.

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

Understanding Deep Learning with Reasoning Layer

A. Approximation Ability
How will the algorithm properties affect the approximation ability of deep architecture with reasoning layers? Given a model
space F := {Algkφ (Qθ(x), b) : φ ∈ Φ, θ ∈ Θ}, we are interested in its approximation ability to functions of the form
Opt (Q∗(x), b). More specifically, we define the loss `φ,θ(x, b) := ‖Algkφ (Qθ(x), b)− Opt(Q∗(x), b)‖2, and measure
the approximation ability by infφ∈Φ,θ∈Θ supQ∗∈Q∗ P`φ,θ, where Q∗ := {X × B 7→ Sd×dµ,L } and P`φ,θ = Ex,b[`φ,θ(x, b)].
Intuitively, using a faster converging algorithm, the model Algkφ could represent the reasoning-task structure, Opt, better
and improve the overall approximation ability. Indeed we can prove the following lemma confirming this intuition.

Lemma A.1. (Faster Convergence ⇒ Better Approximation Ability). Assume the problem setting in Sec 2. The
approximation ability can be bounded by two terms:

inf
φ,θ

sup
Q∗∈Q∗

P`φ,θ ≤σbµ−2 inf
θ

sup
Q∗

P‖Qθ(x)−Q∗(x)‖F︸ ︷︷ ︸
approximation ability of the neural module

+M inf
φ∈Φ

Cvg(k, φ)︸ ︷︷ ︸
best convergence

.

With Lemma A.1, we conclude that: A faster converging algorithm can define a model with better approximation ability.
For example, for a fixed k and Qθ, NAG converges faster than GD, so NAGkφ can approximate Opt more accurately than
GDkφ, which is experimentally validated in Sec C.

Similarly, we can also reverse the reasoning, and ask the question that, given two hydrid architectures with the same
approximation error, which architecture has a smaller error in representing the energy function Q∗? We show that this error
is also intimately related to the convergence of the algorithm.

Lemma A.2. (Faster Convergence⇒ Better Representation of Q∗). Assume the problem setting in Sec 2. ∀φ ∈ Φ, θ ∈
Θ, Q∗ ∈ Q∗ := {X × B 7→ Sd×dµ,L }, it holds true that

P`2φ,θ = ε =⇒ P‖Qθ −Q∗‖2F ≤ σ−2
b L4(

√
ε+M · Cvg(k, φ))2. (4)

Lemma A.2 implies the benefit of using an algorithmic layer that aligns with the reasoning-task structure. Here the task
structure is represented by Opt, the minimizer, and convergence measures how well Algkφ is aligned with Opt. Lemma A.2
essentially indicates that if the structure of a reasoning module can better align with the task structure, then it can better
constrain the search space of the underlying neural module Qθ, making it easier to learn, and further lead to better sample
complexity, which we will explain more in the next section.

As a concrete example for Lemma A.2, if GDkφ (Qθ, ·) and NAGkφ (Qθ, ·) achieve the same accuracy for approximating
Opt (Q∗, ·), then the neural module Qθ in NAGkφ (Qθ, ·) will have a better accuracy for approximating Q∗ than the Qθ in
GDkφ (Qθ, ·). In other words, a faster converging algorithm imposes more constraints on the energy function Qθ, making it
approach Q∗ faster.

B. Pros and Cons for RNN as a Reasoning Layer
It has been shown that RNN (or GNN) can represent reasoning and iterative algorithms over structures [18, 14]. For example,
it is proposed to use RNN to learn an optimization algorithm [18] where the update steps in each iteration are given by the
operations in an RNN cell

yk+1 ← RNNcell (Q, b,yk) := V σ
(
WLσ

(
WL−1 · · ·W 2σ

(
W 1

1 yt +W 1
2 gt
)))

. (5)

In the above equation, we take a specific example where the RNNcell is a multi-layer perception (MLP) with activations
σ = RELU that takes yk and the gradient gt = Qyt + b as inputs. Suppose we denote RNNkφ as a recurrent neural network
that has k unrolled RNN cells and view it as a neural algorithm. Can our analysis framework also be used to understand
RNNkφ and how will its behavior compare with other more interpretable algorithm layers such as GDkφ and NAGkφ?

We view RNNkφ as an algorithm and summarize its algorithm properties in Table 1. Assume φ = {V,W 1
1 ,W

1
2 ,W

2:L}
is in a stable region cφ := supQ‖V ‖2‖W 1

1 + W 1
2Q‖2

∏L
l=2 ‖W l‖2 < 1, so that the operations in RNNcell are strictly

contractive, i.e., ‖yk+1 − yk‖2 < ‖yk − yk−1‖2. In this case, the stability and sensitivity of RNNkφ is guaranteed to be
bounded. Table 1 only shows the best-case convergence, due to a fundamental disadvantage of RNN compared to GD and

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

Understanding Deep Learning with Reasoning Layer

NAG. For an arbitrarily fixed φ in the stable region, the outputs of RNNkφ with different k can form a convergent sequence,
which could coincide with the outputs of GDkφ or NAGkφ with suitable choices of φ. However, in general the outputs of RNNkφ
may not converge to the minimizer Opt. In contrast, GDkφ and NAGkφ has the worst-case convergence guarantee. This property
also allows their sensitivities to decrease to 0 as k grows. In generalization analysis, the worst-case matters more, so GD and
NAG are advantageous.

Table 1. Properties of RNNkφ. (Details are given
in Appendix G.)

Stable region Φ cφ < 1
Stab(k, φ) O(1− ckφ)

Sens(k) O(1− (infφ cφ)k)
minφ Cvg(k, φ) O(ρk) with ρ < 1

The advantage of RNN is its expressiveness, especially given the universal
approximation ability of MLP in the RNNcell. Using existing algorithm as a
reasoning layer restricts the deep model to perform a specific type of reason-
ing. When the needed type of reasoning is unknown or beyond what existing
algorithm is capable of, RNN has the potential to learn new reasoning given
sufficient data.

C. Experimental Validation
Our experiments aim to validate our theoretical prediction with computational simulations, rather than obtaining state-of-
the-art results. We hope the theory together with these experiments can lead to practical guidelines for designing deep
architectures with reasoning layers.

The experiments follow the problem setting in Sec 2. 10000 pairs of (x, b) are uniformly sampled and used as the overall
dataset. During training, n samples are randomly drawn from these 10000 data points as the training set. Each Q∗(x) is
produced by a rotation matrix and a vector of eigenvalues parameterized by a randomly fixed 2-layer dense neural network
with hidden dimension 3. Then the labels are generated according to y = Opt(Q∗(x), b). We train the model Algkφ(Qθ, ·)
on Sn using the loss in Eq. ??. Qθ has the same overall architecture as Q∗ but the hidden dimension could vary. Note that
in all figures, each k corresponds to an independently trained model with k iterations in the algorithm layer, instead of
the sequential outputs of a single model. Each model is trained by ADAM and SGD with learning rate grid-searched from
[1e-2,5e-3,1e-3,5e-4,1e-4], and only the best result is reported. Furthermore, error bars are produced by 20 independent
instantiations of the experiments. See Appendix H for more details.

0 5 10 15 20 25 30
k

0

10

20

30

em
pi

ric
al

 e
rro

r

dim=16
GD
NAG

Figure 3. Approximation error.

Approximation ability. To validate Lemma A.1, we compare GDkφ (Qθ, ·) and
NAGkφ (Qθ, ·) in terms of approximation accuracy. For various hidden sizes of Qθ,
the results are similar, so we report one representative in Fig 3. The approxima-
tion accuracy aligns with the convergence of the algorithms, showing that faster
converging algorithm can induce better approximation ability.

Faster convergence⇒better Qθ. We report the error of the neural module Qθ
in Fig 4. Note that Algkφ(Qθ, ·) is trained end-to-end, without supervision on
Qθ. In Fig 4, the error of Qθ decreases as k grows, in a rate similar to algorithm
convergence. This validates the implication of Lemma A.2 that, when Algkφ is closer to Opt, it can help the underlying
neural module Qθ to get closer to Q∗.

0 5 10 15 20 25 30
k

0.0

0.1

0.2

0.3

0.4

P|
Q
−
Q

* |
2 F

dim=16
GD
NAG

0 5 10 15 20 25 30
k

0.1

0.2

0.3

0.4

P|
Q
−
Q

* |
2 F

dim=32
GD
NAG

Figure 4. P‖Qθ −Q∗‖2F

0 5 10 15 20 25 30
k

0.0

0.5

1.0

ge
ne

ra
liz

at
io

n
ga

p dim=0
GD
NAG

0 5 10 15 20 25 30
k

0.0

0.5

1.0

1.5

2.0

ge
ne

ra
liz

at
io

n
ga

p dim=16
GD
NAG

0 5 10 15 20 25 30
k

0

1

2

3

ge
ne

ra
liz

at
io

n
ga

p dim=32
GD
NAG

Figure 5. Generalization gap

5 10 15 20
k

0

2

4

6

8

tra
in

in
g

er
ro

r GD
NAG
RNN

5 10 15 20
k

0

10

20

30

40

ge
ne

ra
liz

at
io

n
ga

p

GD
NAG
RNN

Figure 6. Algorithm layers vs RNN.

Generalization gap. In Fig 5, we report the generalization gaps, with
hidden sizes ofQθ being 0, 16, and 32, which corresponds to the three
cases (ii), (iii), and (i) discussed under Theorem 3.1, respectively.
Comparing Fig 5 to Fig 2, we can see that the experimental results
match very well with the theoretical implications.

RNN. As discussed in Sec B, RNN can be viewed as neural algo-
rithms. To have a cleaner comparison, we report their behaviors under
the ‘learning to optimize’ senario where the objectives (Q, b) are given. Fig 6 shows that RNN has a better representation
power but worse generalization ability.

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

Understanding Deep Learning with Reasoning Layer

D. Proof of Algorithm Properties
In this section, we study several important properties of gradient descent algorithm (GD) and Nesterov’s accelerated gradient
algorithm (NAG), which have been summarized in Table 2. To simplify the presentation, we shall focus on quadratic
minimization problems as in Section 2 and estimate the sharp dependence on the iteration number k.

Table 2. algorithm properties comparison between GD and NAG. For simplicity, only the order in k is presented. Complete statements
with detailed coefficients and proofs are given in Appendix D.

Alg Cvg(k, φ) Stab(k, φ) Sens(k) Stable region Φ

GDkφ O
(
(1− φµ)k

)
O
(
1− (1− φµ)k

)
O
(
k(1− c0µ)k−1

)
[c0,

2
µ+L]

NAGkφ O
(
k(1−

√
φµ)k

)
O
(
1− (1−

√
φµ)k

)
O
(
k3(1−√c0µ)k

)
[c0,

4
µ+3L]

More precisely, in the subsequent analysis, we shall fix the constants L ≥ µ > 0 and assume the objective function is
in the function class Qµ,L, which contains all µ-strongly convex and L-smooth quadratic functions on Rd. Then, for
any given f ∈ Qµ,L, the eigenvalue decomposition enables us to represent the Hessian matrix of f , denoted by Q, as
Q = UΛU>, where Λ is a diagonal matrix comprising of the eigenvalues (λi)

d
i=1 of Q sorted in ascending order, i.e.,

µ ≤ λ1 ≤ . . . ≤ λd ≤ L, and U ∈ Rd×d is an orthogonal matrix whose columns constitute an orthonormal basis of
corresponding eigenvectors of Q. Moreover, we shall denote by Id the d× d identity matrix, and by ||A||2 the spectral norm
of a given matrix A ∈ Rd×d.

We start with the GD algorithm. Let f ∈ Qµ,L, s ≥ 0 be the stepsize, and x0 ∈ Rd be the initial guess. For each
k ∈ N ∪ {0}, we denote by xk+1 the k + 1-th iterate generated by the following recursive formula (cf. the output yk+1 of
GDφ in Section 3):

xk+1 = xk − s∇f(xk). (6)

The following theorem establishes the convergence of Eq. 6 as k tends to infinity, and the Lipschitz dependence of the iterates
(xsk)k∈N in terms of the stepsize s (i.e., the sensitivity of GD). Similar results can be established for general µ-strongly
convex and L-smooth objective functions.

Theorem D.1. Let f ∈ Qµ,L admit the minimiser x∗ ∈ Rd, x0 ∈ Rd and for each s ≥ 0 let (xsk)k∈N∪{0} be the iterates
generated by Eq. 6 with stepsize s. Then we have for all k ∈ N, c0 > 0, s, t ∈ [c0,

2
µ+L] that

‖xsk − x∗‖2 ≤ (1− sµ)k‖x0 − x∗‖2, ‖xtk − xsk‖2 ≤ Lk(1− c0µ)k−1|t− s|‖x0 − x∗‖2. (7)

Proof. Let Q be the Hessian matrix of f and (λi)
d
i=1 be the eigenvalues of Q. By using the fact that∇f(x∗) = 0 and Eq. 6,

we can obtain for all k ∈ N ∪ {0} and s ≥ 0 that xsk − x∗ = (Id − sQ)(xsk−1 − x∗) = (Id − sQ)k(x0 − x∗).

Since the spectral norm of a matrix is invariant under orthogonal transformations, we have for all s ∈ [c0,
2

µ+L] that

‖Id − sQ‖2 = ‖Id − sΛ‖2 = max
i=1,...,d

|1− sλi| = max(|1− sµ|, |1− sL|)

≤ 1− sµ.
(8)

Hence, for any given k ∈ N ∪ {0}, the inequality that ‖xsk − x∗‖2 ≤ (‖Id − sQ‖2)k‖x0 − x∗‖2 leads us to the desired
estimate for (‖xsk − x∗‖2)k∈N∪{0}.

Now let t, s ∈ [c0,
2

µ+L] be given, by using the fact that d
dsx

s
k = k(Id − sQ)k−1Q(x0 − x∗) for all s > 0, we can deduce

from the mean value theorem that

‖xsk − xtk‖2 ≤
(

sup
r∈(c0,

2
µ+L)

‖ ddrx
r
k‖2
)
|t− s|

≤
(

sup
r∈(c0,

2
µ+L)

k(‖Id − rQ‖2)k−1‖Q‖2‖x0 − x∗‖2
)
|t− s|

≤ k

(
sup

r∈[c0,
2

µ+L]

‖Id − rQ‖2

)k−1

L|t− s|‖x0 − x∗‖2,

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

Understanding Deep Learning with Reasoning Layer

which along with Eq. 8 finishes the proof of the desired sensitivity estimate.

The next theorem shows that Eq. 6 with stepsize s ∈ (0, 2
µ+L] is Lipschitz stable in terms of the perturbations of f . In

particular, for a quadratic function f ∈ Qµ,L, we shall establish the Lipschitz stability with respect to the perturbations in
the parameters of f . For notational simplicity, we assume x0 = 0 as in Section 3, but it is straightforward to extend the
results to an arbitrary initial guess x0 ∈ Rd.

Theorem D.2. Let x0 = 0, for each i ∈ {1, 2} let fi ∈ Qµ,L admit the minimizer x∗,i ∈ Rd and satisfy∇fi(x) = Qix+ bi
for a symmetric matrix Qi ∈ Rd×d and bi ∈ Rd, for each i ∈ {1, 2}, s > 0 let (xsk,i)k∈N∪{0} be the iterates generated by
Eq. 6 with f = fi and stepsize s, and let M = min(‖x∗,1‖2, ‖x∗,2‖2). Then we have for all k ∈ N, c0 > 0, s ∈ [c0,

2
µ+L]

that:

‖xsk,1 − xsk,2‖2 ≤
[

1

µ

(
1− (1− sµ)k

)
+ sk(1− sµ)k−1

]
M‖Q1 −Q2‖2

+
1

µ

(
1− (1− sµ)k

)
‖b1 − b2‖2.

Proof. Let us assume without loss of generality that ‖x∗,2‖2 ≤ ‖x∗,1‖2 and c0 ≤ 2
µ+L . We write δxk = xsk,1 − xsk,2 for

each k ∈ N ∪ {0}. Then, by using Eq. 6 and the fact that∇f1(x)−∇f1(y) = Q1(x− y) for all x, y ∈ Rd, we can deduce
that δx0 = 0 and for all k ∈ N ∪ {0} that

δxk+1 = (Id − sQ1)δxk + ek =

k∑
i=0

(Id − sQ1)iek−i,

where ek = −s(∇f1 −∇f2)(xsk,2) for each k ∈ N ∪ {0}. Note that it holds for all k ∈ N ∪ {0} that

‖ek‖2 ≤ s‖(∇f1 −∇f2)(xsk,2)‖2 ≤ s
(
‖Q2 −Q2‖2‖xsk,2‖2 + ‖b1 − b2‖2

)
≤ s
(
‖Q2 −Q2‖2(‖x∗,2‖2 + ‖xsk,2 − x∗,2‖2) + ‖b1 − b2‖2

)
≤ s
(
‖Q2 −Q2‖2(‖x∗,2‖2 + (1− sµ)k‖x0 − x∗,2‖2) + ‖b1 − b2‖2

)
,

where we have applied Theorem D.1 for the last inequality. Thus for each k ∈ N, we can obtain from Eq. 8 and x0 = 0 that

‖δxk‖2 ≤
k−1∑
i=0

(‖Id − sQ1‖2)i‖ek−1−i‖2

≤
k−1∑
i=0

(1− sµ)is
[
(1 + (1− sµ)k−1−i)‖x∗,2‖2‖Q2 −Q2‖2 + ‖b1 − b2‖2

]
=

[
1

µ

(
1− (1− sµ)k

)
+ sk(1− sµ)k−1

]
min(‖x∗,1‖2, ‖x∗,2‖2)‖Q2 −Q2‖2

+
1

µ

(
1− (1− sµ)k

)
‖b1 − b2‖2.

which leads to the desired conclusion due to the fact that M = min(‖x∗,1‖2, ‖x∗,2‖2).

We now proceed to investigate similar properties of the NAG algorithm, whose proofs are more involved due to the fact that
NAG is a multi-step method.

Recall that for any given f ∈ Qµ,L, initial guess x0 ∈ Rd and stepsize s ≥ 0, the NAG algorithm generates iterates
(xk, yk)k∈N∪{0} as follows: y0 = x0 and for each k ∈ N ∪ {0},

xk+1 = yk − s∇f(yk), yk+1 = xk+1 +
1−√µs
1 +
√
µs

(xk+1 − xk). (9)

Note that xk+1, yk+1 are denoted by yk+1, zk+1, respectively, in Section 3.

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

Understanding Deep Learning with Reasoning Layer

We first introduce the following matrix RNAG,s for Eq. 9 for any given function f ∈ Qµ,L and stepsize s ∈ [0, 4
3L+µ]:

RNAG,s :=

(
(1 + βs)(Id − sQ) −βs(Id − sQ)

Id 0

)
(10)

where βs =
1−√µs
1+
√
µs and Q is the Hessian matrix of f . The following lemma establishes an upper bound of the spectral norm

of the k-th power of RNAG,s, which extends [17, Lemma 22] to block matrices, a wider range of stepsize (s is allowed to be
larger than 1/L) and a momentum parameter βs depending on the stepsize s.

Lemma D.1. Let f ∈ Qµ,L, s ∈ (0, 4
3L+µ], βs =

1−√µs
1+
√
µs and RNAG,s be defined as in Eq. 10. Then we have for all k ∈ N

that ‖RkNAG,s‖2 ≤ 2(k + 1)(1−√µs)k.

Proof. Let Q = UΛUT be the eigenvalue decomposition of the Hessian matrix Q of f , where Λ is a diagonal matrix
comprising of the corresponding eigenvalues of Q sorted in ascending order, i.e., 0 < µ ≤ λ1 ≤ . . . ≤ λd ≤ L. Then we
have that

RNAG,s =

(
U 0
0 U

)(
(1 + βs)(Id − sΛ) −βs(Id − sΛ)

Id 0

)(
UT 0
0 UT

)
,

which together with the facts that any permutation matrix is orthogonal, and the spectral norm of a matrix is invariant under
orthogonal transformations, gives us the identity that: for all k ∈ N,

‖RkNAG,s‖2 =

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
(

(1 + βs)(Id − sΛ) −βs(Id − sΛ)
Id 0

)k∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

= max
i=1,...n

‖T ks,i‖2, (11)

where Ts,i =
(

(1+βs)(1−sλi) −βs(1−sλi)
1 0

)
for all i = 1, . . . , d.

Now let s ∈ (0, 4
3L+µ] and i = 1, . . . , d be fixed. If 1− sλi ≥ 0, by using [?]Lemma 22]chen2018stability (with α = µ,

β = 1/s, h = 1− sλi and κ = β/α = 1/(µs)), we can obtain that

‖T ks,i‖2 ≤ 2(k + 1)

(
1−√µs
1 +
√
µs

(1− µs)
)k/2

≤ 2(k + 1)(1−√µs)k.

We then discuss the case where 1− sλi < 0. Let us write T ks,i =
(
ak bk
ck dk

)
for each k ∈ N∪ {0}, then we have for all k ∈ N

that

ak = (1 + βs)(1− sλi)ak−1 − βs(1− sλi)ck−1, ck = ak−1,

bk = (1 + βs)(1− sλi)bk−1 − βs(1− sλi)dk−1, dk = bk−1,

with a1 = (1 + βs)(1− sλi), b1 = −βs(1− sλi), c1 = 1 and d1 = 0. Since the conditions 1− sλi < 0 and s ≤ 4
3L+µ

imply that λi > 1
s ≥

3L+µ
4 ≥ µ, we see the discriminant of the characteristic polynomial satisfies that

∆ = (1 + βs)
2(1− sλi)2 − 4βs(1− sλi) =

4(1− sλi)
(1 +

√
µs)2

s(µ− λi) > 0,

which implies that there exist l1, l2, l3, l4 ∈ R such that it holds for all k ∈ N ∪ {0} that ak = l1τ
k+1
+ + l2τ

k+1
− and

bk = l3τ
k+1
+ + l4τ

k+1
− , with τ± = (1+βs)(1−sλi)±

√
∆

2 , l1 = 1
τ+−τ− , l2 = − 1

τ+−τ− , l3 = −τ−
τ+−τ− and l4 = τ+

τ+−τ− . Thus, by

letting ρi := max(|τ+|, |τ−|), we have that |ak| = |
∑k
j=0 τ

k−j
+ τ j−| ≤ (k+1)ρki and |bk| = |(−τ+τ−)

∑k−1
j=0 τ

k−1−j
+ τ j−| ≤

kρk+1
i for all k ∈ N ∪ {0}.

Now we claim that the conditions 1 − sλi < 0 and 0 < s ≤ 4
3L+µ imply the estimate that ρi ≤ 1 − √µs < 1. In fact,

the inequality s ≤ 4
3L+µ gives us that µs ≤ 4µ

3L+µ ≤ 1, which implies that βs =
1−√µs
1+
√
µs ≥ 0. Hence we can deduce from

1− sλi < 0 that
√

∆ ≥ (1 + βs)(sλi − 1) and

|τ+| ≤ |τ−| ≤
sλi − 1 +

√
(sλi − 1)s(λi − µ)

1 +
√
µs

≤
sL− 1 +

√
(sL− 1)s(L− µ)

1 +
√
µs

.

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

Understanding Deep Learning with Reasoning Layer

Note that 2− (µ+ L)s ≥ 2− 4(µ+L)
3L+µ ≥ 0, we see that

ρi ≤ 1−√µs ⇐= |τ−| ≤ 1−√µs ⇐= sL− 1 +
√

(sL− 1)s(L− µ) ≤ 1− µs
⇐⇒ (sL− 1)s(L− µ) ≤ (2− (µ+ L)s)2

⇐⇒ (us− 1)((3L+ µ)s− 4) ≥ 0.

Therefore, we have that max(|ak|, |bk|, |ck|, |dk|) ≤ (k + 1)(1−√µs)k, which, along with the relationship between the
spectral norm and Frobenius norm, gives us that ‖T ks,i‖2 ≤ ‖T ks,i‖F ≤ 2(k + 1)(1−√µs)k, and finishes the proof of the
desired estimate for the case with 1− sλi < 0.

As an important consequence of Lemma D.1, we now obtain the following upper bound of the error (‖xk − x∗‖2)k∈N for
any given objective function f ∈ Qµ,L and stepsize s ∈ (0, 4

3L+µ].

Theorem D.3. Let f ∈ Qµ,L admit the minimizer x∗ ∈ Rd, x0 ∈ Rd, s ∈ (0, 4
3L+µ] and (xsk, y

s
k)k∈N∪{0} be the iterates

generated by Eq. 9 with stepsize s. Then we have for all k ∈ N ∪ {0} that

‖xsk+1 − x∗‖22 + ‖xsk − x∗‖22 ≤ 8(1 + k)2(1−√µs)2k‖x0 − x∗‖22.

Proof. For any f ∈ Qµ,L, and s ∈ (0, 4
3L+µ], by letting βs =

1−√µs
1+
√
µs , we can rewrite Eq. 9 as follows: xs0 = x0,

xs1 = x0 − s∇f(x0) and for all k ∈ N,

xsk+1 = (1 + βs)x
s
k − βsxk−1 − s∇f((1 + βs)x

s
k − βsxk−1), (12)

which together with the fact that∇f(x∗) = 0 shows that(
xsk+1 − x∗
xsk − x∗

)
= RNAG,s

(
xsk − x∗
xsk−1 − x∗

)
= RkNAG,s

(
xs1 − x∗
xs0 − x∗

)
where RNAG,s is defined as in Eq. 10. Hence by using xs1 = x0 − s∇f(x0) and Theorem D.1, we can obtain that

‖xsk+1 − x∗‖22 + ‖xsk − x∗‖22 ≤ ‖RkNAG,s‖22(‖xs1 − x∗‖22 + ‖xs0 − x∗‖22)

≤ ‖RkNAG,s‖222‖x0 − x∗‖22,

which together with Lemma D.1 leads to the desired convergence result.

Remark D.1. It is well-known that for a general µ-strongly convex and L-smooth objective function f , one can employ
a Lyapunov argument and establish that the iterates obtained by Eq. 9 with stepsize s ∈ [0, 1

L] satisfy the estimate that
‖xk − x∗‖22 ≤ 2L

µ (1 − √µs)k‖x0 − x∗‖22. Here by taking advantage of the affine structure of ∇f , we have obtained a
sharper estimate of the convergence rate for a wider range of stepsize s ∈ (0, 4

3L+µ].

We also would like to emphasize that the upper bound in Theorem D.3 is tight, in the sense that the additional quadratic
dependence on k in the error estimate is inevitable. In fact, one can derive a closed-form expression of RkNAG,s and show that,
for an index i such that the eigenvalue λi is sufficiently close to µ, the squared error for that component is of the magnitude
O((k

√
µs+ 1)2(1−√µs)2k).

We then proceed to analyze the sensitivity of Eq. 9 with respect to the stepsize. The following theorem shows that the
iterates (xk, yk)k∈N∪{0} generated by Eq. 9 depend Lipschitz continuously on the stepsize s.

Theorem D.4. Let f ∈ Qµ,L admit the minimiser x∗ ∈ Rd, x0 ∈ Rd, and for each s ∈ (0, 4
3L+µ] let (xsk, y

s
k)k∈N∪{0} be

the iterates generated by Eq. 9 with stepsize s. Then we have for all k ∈ N, c0 > 0 and t, s ∈ [c0,
4

3L+µ] that:

‖xtk − xsk‖2 ≤
(

2L(1 + k) +
4

3
k(k + 1)(k + 5)

(√
µ

c0
+ 2L

))
(1−√µc0)k|t− s|‖x0 − x∗‖2.

660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

Understanding Deep Learning with Reasoning Layer

Proof. Throughout this proof we assume without loss of generality that c0 ≤ s < t ≤ 4
3L+µ . Let Q be the Hessian matrix

of f , for each r ∈ [c0,
4

3L+µ] let βr =
1−√µr
1+
√
µr , and for each k ∈ N ∪ {0} let δxk = xtk − xsk . Then we can deduce from

Eq. 12 that δx0 = 0, δx1 = −(t− s)∇f(x0) and for all k ∈ N that

xtk+1 − xsk+1 = [(1 + βt)x
t
k − βtxtk−1 − t∇f((1 + βt)x

t
k − βtxtk−1)]

− [(1 + βs)x
s
k − βsxsk−1 − s∇f((1 + βs)x

s
k − βsxsk−1)],

which together with the fact that∇f(x)−∇f(y) = Q(x− y) for all x, y ∈ Rd shows that(
δxk+1

δxk

)
= RNAG,t

(
δxk
δxk−1

)
+

(
ek
0

)
with RNAG,t defined as in Eq. 10 and the following residual term

ek := [(1 + βt)x
s
k − βtxsk−1 − t∇f((1 + βt)x

s
k − βtxsk−1)]

− [(1 + βs)x
s
k − βsxsk−1 − s∇f((1 + βs)x

s
k − βsxsk−1)].

Hence we can obtain by induction that: for all k ∈ N,(
δxk+1

δxk

)
= RkNAG,t

(
δx1

δx0

)
+

k−1∑
i=0

RiNAG,t

(
ek−i

0

)
. (13)

Now the facts that ∇f(x∗) = 0 and ∇2f ≡ Q gives us that

ek = (βt − βs)(xsk − xsk−1)− t∇f((1 + βt)x
s
k − βtxsk−1) + s∇f((1 + βs)x

s
k − βsxsk−1)

= (βt − βs)
(
(xsk − x∗)− (xsk−1 − x∗)

)
− tQ

(
(1 + βt)(x

s
k − x∗)− βt(xsk−1 − x∗)

)
+ sQ

(
(1 + βs)(x

s
k − x∗)− βs(xsk−1 − x∗)

)
=
[
(βt − βs)− (t+ tβt − s− sβs)Q

]
(xsk − x∗)−

[
(βt − βs)− (tβt − sβs)Q

]
(xsk−1 − x∗).

Note that one can easily verify that the function g1(r) = βr is
√
µ/c0-Lipschitz on [c0,

4
3L+µ], and the function g2(r) = rβr

is 1-Lipschitz on [0, 4
3L+µ]. Moreover, the fact that f ∈ Qµ,L implies that ‖Q‖2 ≤ L. Thus we can obtain from Theorem

D.3 that

‖ek‖2 ≤
(√

µ

c0
+ 2L

)
|t− s|‖xsk − x∗‖2 +

(√
µ

c0
+ L

)
|t− s|‖xsk−1 − x∗‖2

≤
(√

µ

c0
+ 2L

)
|t− s|

√
2(‖xsk − x∗‖22 + ‖xsk−1 − x∗‖22)

≤
(√

µ

c0
+ 2L

)
|t− s|4(1 + k)(1−√µs)k‖x0 − x∗‖2.

This, along with Eq. 13, Lemma D.1 and s < t, gives us that

√
‖δxk+1‖22 + ‖δxk‖22 ≤ ‖RkNAG,t‖2‖δx1‖2 +

k−1∑
i=0

‖RiNAG,t‖2‖ek−i‖2

≤ 2(1 + k)(1−
√
µt)k|t− s|L‖x0 − x∗‖2

+

k−1∑
i=0

2(1 + i)(1−
√
µt)i

(√
µ

c0
+ 2L

)
|t− s|4(1 + k − i)(1−√µs)k−i‖x0 − x∗‖2

=

(
2L(1 + k) +

4

3
k(k + 1)(k + 5)

(√
µ

c0
+ 2L

))
|t− s|(1−√µs)k‖x0 − x∗‖2,

which finishes the proof of the desired estimate due to the fact that s ≥ c0.

715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

Understanding Deep Learning with Reasoning Layer

The next theorem is an an analog of Theorem D.2 for the NAC scheme Eq. 9, which shows that the outputs of Eq. 9 with
stepsize s ∈ (0, 4

3L+µ] is Lipschitz stable with respect to the perturbations of the parameters in f .

Theorem D.5. Let x0 = 0, for each i ∈ {1, 2} let fi ∈ Qµ,L admit the minimizer x∗,i ∈ Rd and satisfy∇fi(x) = Qix+ bi
for a symmetric matrix Qi ∈ Rd×d and bi ∈ Rd, for each i ∈ {1, 2}, s > 0 let (xsk,i)k∈N∪{0} be the iterates generated by
Eq. 9 with f = fi and stepsize s, and let M = min(‖x∗,1‖2, ‖x∗,2‖2). Then we have for all k ∈ N, s ∈ [c0,

4
3L+µ] that:

‖xsk,1 − xsk,2‖2 ≤
[

2

µ

(
1− (1−√µs)k−1

)
+ s

8(k − 1)k(k + 4)

3
(1−√µs)k−1

]
M‖Q1 −Q2‖2

+
2

µ

(
1− (1−√µs)k

)
‖b1 − b2‖2.

Proof. Let us assume without loss of generality that ‖x∗,2‖2 ≤ ‖x∗,1‖2. We first fix an arbitrary s ∈ [c0,
4

3L+µ] and write
δxk = xsk,1 − xsk,2 for each k ∈ N ∪ {0}. Then, by using Eq. 12 and the fact that∇f1(x)−∇f1(y) = Q1(x− y) for all
x, y ∈ Rd, we can deduce that δx0 = 0, δx1 = −s(∇f1 −∇f2)(x0) and for all k ∈ N,(

δxk+1

δxk

)
= RNAG,s

(
δxk
δxk−1

)
+

(
ek
0

)
= RkNAG,s

(
δx1

δx0

)
+

k−1∑
j=0

RjNAG,s

(
ek−j

0

)
, (14)

where RNAG,s is defined as in Eq. 10 (with Q = Q1) and the residual term ek is given by

ek := −s(∇f1 −∇f2)((1 + βs)x
s
k,2 − βsxsk−1,2) ∀k ∈ N.

Note that, by using Theorem D.3 and the inequality that x+y ≤
√

2(x2 + y2) for all x, y ∈ R, we have for each k ∈ N that

‖ek‖2 = s‖(Q1 −Q2)((1 + βs)x
s
k,2 − βsxsk−1,2) + (b1 − b2)‖2

≤ s‖Q1 −Q2‖2(‖x∗,2‖2 + 2‖xsk,2 − x∗,2‖2 + ‖xsk−1,2 − x∗,2‖2) + s‖b1 − b2‖2
≤ s‖Q1 −Q2‖2(‖x∗,2‖2 + 2‖xsk,2 − x∗,2‖2 + ‖xsk−1,2 − x∗,2‖2) + s‖b1 − b2‖2
≤ s‖Q1 −Q2‖2(‖x∗,2‖2 + 8(1 + k)(1−√µs)k‖x0 − x∗,2‖2) + s‖b1 − b2‖2.

Hence we can obtain from Eq. 14, Lemma D.1 and x0 = 0 that√
‖δxk+1‖22 + ‖δxk‖22 ≤ 2(k + 1)(1−√µs)k‖δx1‖2 +

k−1∑
j=0

2(j + 1)(1−√µs)j‖ek−j‖2

≤ 2(k + 1)(1−√µs)ks‖b1 − b2‖2 +

k−1∑
j=0

2(j + 1)(1−√µs)j
[
s‖b1 − b2‖2

+ s‖Q1 −Q2‖2(1 + 8(1 + k − j)(1−√µs)k−j)‖x∗,2‖2
]

≤ 2s

k∑
j=0

(j + 1)(1−√µs)j‖b1 − b2‖2 + 2s

k−1∑
j=0

[
(j + 1)(1−√µs)j

+ 8(j + 1)(1 + k − j)(1−√µs)k
]
‖Q1 −Q2‖2 min(‖x∗,1‖2, ‖x∗,2‖2).

Let p = 1−√µs ∈ [0, 1), then we can easily show for each k ∈ N ∪ {0} that (1− p)
∑k
j=0(j + 1)pj =

∑k
j=0 p

j − pk+1,

which implies that
∑k
j=0(j+1)(1−√µs)j ≤ 1−(1−√µs)k+1

µs . Moreover, we have that
∑k−1
j=0 (j+1)(1+k−j) = k(k+1)(k+5)

6
for all k ∈ N. Thus we can simplify the above estimate and deduce for each k ∈ N that

‖δxk+1‖2 ≤
2

µ

(
1− (1−√µs)k+1

)
‖b1 − b2‖2 +

[
2

µ

(
1− (1−√µs)k

)
+ s

8k(k + 1)(k + 5)

3
(1−√µs)k

]
‖Q1 −Q2‖2 min(‖x∗,1‖2, ‖x∗,2‖2).

Moreover, the condition that s ≤ 4
3L+µ ≤

1
µ implies that ‖δx1‖2 = s‖b1 − b2‖2 ≤ 2

µ

(
1− (1−√µs)

)
‖b1 − b2‖2, which

shows that the same upper bound also holds for ‖δx1‖2 and finishes the proof of the desired estimate.

770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

Understanding Deep Learning with Reasoning Layer

E. Proof of Approximation Ability
Lemma A.1. (Faster Convergence ⇒ Better Approximation Ability). Assume the problem setting in Sec 2. The
approximation ability can be bounded by two terms:

inf
φ,θ

sup
Q∗∈Q∗

P`φ,θ ≤σbµ−2 inf
θ

sup
Q∗

P‖Qθ(x)−Q∗(x)‖F︸ ︷︷ ︸
approximation ability of the neural module

+M inf
φ∈Φ

Cvg(k, φ)︸ ︷︷ ︸
best convergence

.

Proof. For each φ ∈ Φ, θ ∈ Θ, Q∗ ∈ Q∗,

`φ,θ(x, b) = ‖Algkφ(Qθ(x), b)− Opt(Q∗(x), b)‖2 (15)

≤ ‖Algkφ(Qθ(x), b)− Opt(Qθ(x), b)‖2 + ‖Opt(Qθ(x), b)− Opt(Q∗(x), b)‖2 (16)

≤ Cvg(k, φ)‖Alg0
φ(Qθ(x), b)− Opt(Q∗(x), b)‖2 + ‖Qθ(x)−1b−Q∗(x)−1b‖2 (17)

≤ Cvg(k, φ) ·M + ‖
(
Qθ(x)−1 −Q∗(x)−1

)
b‖2, (18)

where in the last inequality we have used the facts that the initialization is assumed to be zero vector, i.e., Alg0
φ(Qθ(x), b) =

0, and that M ≥ supx∈X ,b∈B Opt(Q∗(x), b). Note that the independence of (x, b) and the fact that Ebb> = σ2
b I imply

that

Eb‖
(
Qθ(x)−1 −Q∗(x)−1

)
b‖22 (19)

= Tr
(
(Qθ(x)−1 −Q∗(x)−1)>(Qθ(x)−1 −Q∗(x)−1)σ2

b I
)

(20)

= σ2
b‖Qθ(x)−1 −Q∗(x)−1‖2F (21)

= σ2
b‖Qθ(x)−1(Qθ(x)−Q∗(x))Q∗(x)−1‖2F (22)

≤ µ−4σ2
b‖Qθ(x)−Q∗(x)‖2F (23)

Therefore, we see from Hölder’s inequality that

Eb‖
(
Qθ(x)−1 −Q∗(x)−1

)
b‖2 ≤ µ−2σb‖Qθ(x)−Q∗(x)‖F . (24)

Collecting all the above inequalities, we have

P`φ,θ ≤ Cvg(k, φ) ·M + σbµ
−2P‖Qθ −Q∗‖F . (25)

Taking supremum over Q∗, we have

sup
Q∗∈Q∗

P`φ,θ ≤ Cvg(k, φ) ·M + σbµ
−2 sup

Q∗∈Q∗
P‖Qθ −Q∗‖F . (26)

Taking infimum over φ and θ, we have

inf
φ∈Φ,θ∈Θ

sup
Q∗∈Q∗

P`φ,θ ≤ inf
φ∈Φ

Cvg(k, φ) ·M + σbµ
−2 inf

θ∈Θ
sup

Q∗∈Q∗
P‖Qθ −Q∗‖F . (27)

Lemma A.2. (Faster Convergence⇒ Better Representation of Q∗). Assume the problem setting in Sec 2. ∀φ ∈ Φ, θ ∈
Θ, Q∗ ∈ Q∗ := {X × B 7→ Sd×dµ,L }, it holds true that

P`2φ,θ = ε =⇒ P‖Qθ −Q∗‖2F ≤ σ−2
b L4(

√
ε+M · Cvg(k, φ))2. (4)

Proof. We shall prove the same conclusion under a slightly weaker assumption that P`2φ,θ ≤ ε. For any x ∈ X , b ∈ B, we
have

`φ,θ(x) ≥ ‖Opt (Qθ(x), b)− Opt (Q∗(x), b) ‖2 − ‖Algkφ (Qθ(x), b)− Opt (Qθ(x), b) ‖2
≥ ‖Qθ(x)−1b−Q∗(x)−1b‖2 − Cvg(k, φ)‖Opt (Qθ(x), b) ‖2 (28)

≥ ‖Qθ(x)−1b−Q∗(x)−1b‖2 −M · Cvg(k, φ). (29)

825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879

Understanding Deep Learning with Reasoning Layer

Rearranging the terms in the above inequality, we have

‖Qθ(x)−1b−Q∗(x)−1b‖2 ≤ `φ,θ(x) +M · Cvg(k, φ). (30)

By Eq. 22 and the inequality that ‖AB‖F ≤ ‖A‖2‖B‖F for any given A ∈ Rm×r and B ∈ Rr×n, we have that

Eb‖Qθ(x)−1b−Q∗(x)−1b‖22 (31)

= σ2
b‖Qθ(x)−1(Qθ(x)−Q∗(x))Q∗(x)−1‖2F (32)

≥ σ2
b

‖Qθ(x)−Q∗(x)‖2F
‖Q∗(x)‖22‖Qθ(x)‖22

(33)

≥ σ2
b‖Qθ(x)−Q∗(x)‖2F /L4, (34)

which implies that,

‖Qθ(x)−Q∗(x)‖2F ≤ σ−2
b L4Eb‖Qθ(x)−1b−Q∗(x)−1b‖22. (35)

Combining it with Eq. 30 and the fact that (P`φ,θ)
2 ≤ P`2φ,θ, we have

P‖Qθ(x)−Q∗(x)‖2F ≤ σ−2
b L4P (`φ,θ +M · Cvg(k, φ))2 (36)

= σ−2
b L4

(
P`2φ,θ + (M · Cvg(k, φ))2 + 2(M · Cvg(k, φ))P`φ,θ

)
(37)

≤ σ−2
b L4

(
ε+ (M · Cvg(k, φ))2 + 2(M · Cvg(k, φ))

√
ε
)

(38)

= σ−2
b L4

(√
ε+M · Cvg(k, φ)

)2
, (39)

which completes the proof.

880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934

Understanding Deep Learning with Reasoning Layer

F. Proof of Generalization Ability
In this section, we shall prove the following result, which is a refined version of Theorem 3.1.

Theorem F.1. Assume the problem setting in Sec 2 and let r > 0. Then for any t > 0, with probability at least 1− e−t, the
empirical Rademacher complexity of `locF (r) can be bounded by

Rn`
loc
F (r) ≤

√
2dn−

1
2 Stab(k)

(√
(
√
r +MCvg(k))2C1(n) + C2(n, t, k, r) + 4

)
+ Sens(k)BΦ,

where

C1(n) = 216σ−2
b L4 logN (n−

1
2 , `Q, L2(Pn))

C2(n, t, k, r) =

(
768B2

Qt

n
+ 720BQERn`locQ (rq)

)
logN (n−

1
2 , `Q, L2(Pn)),

rq = σ−2
b L4(

√
r + MCvg(k))2, `locQ (rq) = {‖Qθ − Q∗‖F : θ ∈ Θ, P‖Qθ − Q∗‖2F ≤ rq}, BQ = 2L

√
d, and BΦ =

1
2 supφ1,φ2∈Φ ‖φ1 − φ2‖2.

Furthermore, for any t > 0, the expected Rademacher complexity of `locF (r) can be bounded by

ERn`locF (r) ≤
√

2dn−
1
2 Stab(k)

(√
(
√
r +MCvg(k))2C1(n) + C2(n, t) + C3(n, t) + 4

)
+ Sens(k)BΦ,

where

C1(n) = 216σ−2
b L4 logNQ,

C2(n, t) =

(
1 + 3BQe

−t√logNQ +
45√
n
BQ logNQ

)
2880√
n
BQ logNQ + t

768B2
Q

n
logNQ,

C3(n, t) = 12BQe
−t√logNQ +

360√
n
BQ logNQ,

and NQ = N (n−
1
2 , `Q, L∞).

In order to prove Theorem F.1, we first prove the following theorem, which reduces bounding the empirical Rademacher
complexity of `locF (r) to that of `locQ (rq), and plays an important role in our complexity analysis.

Theorem F.2. Assume the problem setting in Sec 2. Then it holds for any r > 0 that

Rn`
loc
F (r) ≤

√
2d Stab(k)Rn`

loc
Q (rq) + Sens(k)BΦ, (40)

with rq = σ−2
b L4(

√
r + MCvg(k))2, `locQ (rq) = {‖Qθ − Q∗‖F : θ ∈ Θ, P‖Qθ − Q∗‖2F ≤ rq} and BΦ =

1
2 supφ1,φ2∈Φ ‖φ1 − φ2‖2.

Proof. Let k ∈ N be fixed throughout this proof. We first show that the loss `φ,θ is Stab(k)-Lipschtiz in Qθ and Sens(k)-
Lipschitiz in φ. For any (x, b) ∈ X × B, by using the triangle inequality and the definitions of Stab(k, φ′) and Sens(k), we
can obtain the following estimate of the loss:

|`φ,θ(x)− `φ′,θ′(x)|
= |‖Algkφ(Qθ(x), b)− Opt(Q∗(x), b)‖2 − ‖Algkφ′(Qθ′(x), b)− Opt(Q∗(x), b)‖2|
≤ ‖Algkφ(Qθ(x), b)− Algkφ′(Qθ′(x), b)‖2
≤ ‖Algkφ′(Qθ(x), b)− Algkφ′(Qθ′(x), b)‖2 + ‖Algkφ(Qθ(x), b)− Algkφ′(Qθ(x), b)‖2
≤ Stab(k, φ′)‖Qθ(x)−Qθ′(x)‖2 + Sens(k)‖φ− φ′‖2
≤ Stab(k)‖Qθ(x)−Qθ′(x)‖2 + Sens(k)‖φ− φ′‖2.

(41)

935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989

Understanding Deep Learning with Reasoning Layer

where we write Stab(k) = supφ∈Φ Stab(k, φ) for each k ∈ N.

We then establish a vector contraction inequality, which is a modified version of Corollary 4 in [20] and Lemma 5 in [21].
Note that the empirical Rademacher complexity of `locF can be written as:

Rn`
loc
F (r) =

1

n
Eσ sup

φ,θ

n∑
i=1

σi`φ,θ(xi) =
1

n
Eσ1:n−1

Eσn sup
φ,θ

n−1∑
i=1

σi`φ,θ(xi) + σn`φ,θ(xn), (42)

where the supremum is taken over the parameter space
{

(φ, θ) : φ ∈ Φ, θ ∈ Θ, P `2φ,θ ≤ r
}

.

Let Un−1(φ, θ) =
∑n−1
i=1 σi`φ,θ(xi) for each (φ, θ). We now assume without loss of generality that the supremum can be

attained and let

φ1, θ1 = arg sup
φ,θ

(
Un−1(φ, θ) + `φ,θ(xn)

)
,

φ2, θ2 = arg sup
φ,θ

(
Un−1(φ, θ)− `φ,θ(xn)

)
,

since otherwise we can consider (φ1, θ1) and (φ2, θ2) that are ε-close to the suprema for any ε > 0 and conclude the same
result. Then we can deduce from Eq. 41 that

Eσn sup
φ,θ

n−1∑
i=1

σi`φ,θ(xi) + σn`φ,θ(xn)

=
1

2

(
Un−1(φ1, θ1) + `φ1,θ1(xn) + Un−1(φ2, θ2)− `φ2,θ2(xn)

)
=

1

2

(
Un−1(φ1, θ1) + Un−1(φ2, θ2) + (`φ1,θ1(xn)− `φ2,θ2(xn))

)
≤ 1

2

(
Un−1(φ1, θ1) + Un−1(φ2, θ2)

)
+

1

2

(
Stab(k)‖Qθ1(xn)−Qθ2(xn)‖2 + Sens(k)‖φ1 − φ2‖2

)
≤ 1

2

(
Un−1(φ1, θ1) + Un−1(φ2, θ2)

)
+

1

2
Stab(k)‖Qθ1(xn)−Qθ2(xn)‖F + Sens(k)BΦ,

where BΦ = 1
2 supφ1,φ2∈Φ ‖φ1 − φ2‖2.

For each x ∈ X , θ ∈ Θ and 1 ≤ j, k ≤ d, let Qj,kθ (x) be the j, k-th entry of the matrix Qθ(x). The the Khintchine-Kahane
inequality (see e.g. [20]) gives us that

Eσn sup
φ,θ

n∑
i=1

σi`φ,θ(xi) ≤
1

2
(Un−1(φ1, θ1) + Un−1(φ2, θ2)) + Sens(k)BΦ (43)

+
1

2
Stab(k)

√
2Eεn

∣∣∣∣∑
j,k

εj,kn

(
Qj,kθ1 (xn)−Qj,kθ2 (xn)

) ∣∣∣∣, (44)

where εn = (εj,kn)nj,k=1 are independent Rademacher variables. Hence, if we denote by s(εn) the sign of

990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044

Understanding Deep Learning with Reasoning Layer∑
j,k ε

j,k
n

(
Qj,kθ1 (xn)−Qj,kθ2 (xn)

)
and by Q∗j,k(x) be the j, k-th entry of the matrix Q∗(x), then we can obtain that

Eσn sup
φ,θ

n∑
i=1

σi`φ,θ(xi)

≤ Eεn
1

2

[(
Un−1(φ1, θ1) + Stab(k)

√
2s(εn)

∑
j,k

εj,kn Qj,kθ1 (xn)

)

+

(
Un−1(φ2, θ2)− Stab(k)

√
2s(εn)

∑
j,k

εj,kn Qj,kθ2 (xn)

)]
+ Sens(k)BΦ

= Eεn
1

2

[(
Un−1(φ1, θ1) + Stab(k)

√
2s(εn)

∑
j,k

εj,kn

(
Qj,kθ1 (xn)−Q∗j,k(xn)

))

+

(
Un−1(φ2, θ2)− Stab(k)

√
2s(εn)

∑
j,k

εj,kn

(
Qj,kθ2 (xn)−Q∗j,k(xn)

))]
+ Sens(k)BΦ.

Then by taking the supremum over (φ, θ) and using the fact that σn is an independent Rademacher variable, we can deduce
that

Eσn sup
φ,θ

n∑
i=1

σi`φ,θ(xi)

≤ Eεn
1

2

[
sup
φ,θ

(
Un−1(φ, θ) + Stab(k)

√
2s(εn)

∑
j,k

εj,kn

(
Qj,kθ (xn)−Q∗j,k(xn)

))

+ sup
φ,θ

(
Un−1(φ, θ)− Stab(k)

√
2s(εn)

∑
j,k

εj,kn

(
Qj,kθ (xn)−Q∗j,k(xn)

))]
+ Sens(k)BΦ

= EεnEσn
[

sup
φ,θ

(
Un−1(φ, θ) + Stab(k)

√
2σn

∑
j,k

εj,kn

(
Qj,kθ (xn)−Q∗j,k(xn)

))]
+ Sens(k)BΦ

= Eεn
[

sup
φ,θ

(
Un−1(φ, θ) + Stab(k)

√
2
∑
j,k

εj,kn

(
Qj,kθ (xn)−Q∗j,k(xn)

))]
+ Sens(k)BΦ,

where we have used the fact that
∑
j,k ε

j,k
n

(
Qj,kθ (xn)−Q∗j,k(xn)

)
is a symmetric random variable in the last line.

By proceeding in the same way for all other σn−1, · · · , σ1, we can obtain the following vector-contraction inequality:

Eσ sup
φ,θ

n∑
i=1

σi`φ,θ(xi) ≤
√

2Stab(k)Eε1:n
[
sup
θ

n∑
i=1

∑
j,k

εj,ki

(
Qj,kθ (xn)−Q∗j,k(xn)

)]
+ nSens(k)BΦ.

(45)

1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099

Understanding Deep Learning with Reasoning Layer

The first term on the right-hand side can be bounded by using the Cauchy-Schwarz inequality as follows:

Eε1:n

sup
θ

n∑
i=1

∑
j,k

εj,ki

(
Qj,kθ (xn)−Q∗j,k(xn)

)
= Eσ1:n

Eε1:n

sup
θ

n∑
i=1

σi
∑
j,k

εj,ki

(
Qj,kθ (xn)−Q∗j,k(xn)

)
≤ Eσ1:n

Eε1:n

sup
θ

n∑
i=1

σi

√∑
j,k

(εj,ki)2

√∑
j,k

|Qj,kθ (xn)−Q∗j,k(xn)|2


= Eσ1:n

Eε1:n

[
sup
θ

n∑
i=1

σid‖Qθ(xn)−Q∗(xn)‖F

]

= dEσ1:n

[
sup
θ

n∑
i=1

σi‖Qθ(xn)−Q∗(xn)‖F

]
.

(46)

Therefore, bounding the Rademacher complexity of `locF (r) reduces to bounding the Rademacher complexity of the space
of functions ‖Qθ − Q∗‖F . Recall that the supremum is taken over the parameter space where (φ, θ) ∈ Φ × Θ satisfies
P`2φ,θ ≤ r. Note that Lemma A.2 implies that,

P‖Qθ −Q∗‖2F ≤ rq := σ−2
b L4

(√
ε+M · Cvg(k, φ)

)2
. (47)

Hence, by defining the following function space:

`locQ (rq) :=
{
‖Qθ −Q∗‖F : θ ∈ Θ, P‖Qθ −Q∗‖2F ≤ rq

}
, (48)

we can conclude the desired relationship between Rn`locF (r) and Rn`locQ (rq) from the inequalities Eq. 45 and Eq. 46.

With Theorem F.2 in hand, we see that, for each r > 0, in order to obtain the upper bounds of Rn`locF (r) in Theorem F.1, it
suffices to estimate Rn`locQ (rq), i.e., the Rademacher complexity of the function space `locQ (rq).

The following theorem summarizes the estimates for the empirical and expected Rademacher complexity of the local class
`locQ , which will be established in Propositions F.1 and F.2, respectively.

Recall that, for any given ε > 0, a class of functions F and pseudometric ‖ · ‖, the covering numberN (ε,F , ‖ · ‖) is defined
as the cardinality of the smallest subset F̂ of F for which every element of F is within the ε-neighbourhood of some element
of F̂ with respect to the pseudometric ‖ · ‖.
Theorem F.3. Assume the problem setting in Sec 2. Let r > 0, rq = σ−2

b L4(
√
r + MCvg(k))2 and `locQ (rq) = {‖Qθ −

Q∗‖F : θ ∈ Θ, P‖Qθ −Q∗‖2F ≤ rq}. Then for all t > 0, we have with probability at least 1− e−t that

Rn`
loc
Q (rq) ≤ n−

1
2

[(
C1(n)(

√
r +MCvg(k))2 + C2(n, t, k, r)

) 1
2

+ 4

]
, (49)

where

C1(n) = 216σ−2
b L4 logN

(
n−

1
2 , `Q, L2(Pn)

)
,

C2(n, t, k, r) =

(
768B2

Qt

n
+ 720BQERn`locQ (rq)

)
logN

(
n−

1
2 , `Q, L2(Pn)

)
,

and BQ = 2L
√
d.

1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154

Understanding Deep Learning with Reasoning Layer

Moreover, for all t > 0, we have that

ERn`locQ (rq) ≤ n−
1
2

[(
C1(n)(

√
r +MCvg(k))2 + C2(n, t)

) 1
2

+ C3(n, t) + 4

]
, (50)

where

C1(n) = 216σ−2
b L4 logNQ,

C2(n, t) =

(
1 + 3BQe

−t√logNQ +
45√
n
BQ logNQ

)
2880√
n
BQ logNQ + t

768B2
Q

n
logNQ,

C3(n, t) = 12BQe
−t√logNQ +

360√
n
BQ logNQ

and NQ = N (n−
1
2 , `Q, L∞).

We first establish the estimate for the empirical Rademacher complexity Rn`locQ (rq), i.e., Eq. 49 in Theorem F.3.

Proposition F.1. Assume the problem setting in Sec 2. Let BQ = sup(θ,x)∈Θ×X ‖Qθ(x)−Q∗(x)‖F , and for each r > 0

let rq and `locQ (rq) be defined as in Theorem F.2. Then we have that

Rn`
loc
Q (rq) ≤ 4√

n

(
1 + 3BQ

√
logN

(
1√
n
, `locQ (rq), L2(Pn)

))
. (51)

Moreover, for all t > 0, it holds with probability at least 1− e−t that

Rn`
loc
Q (rq) ≤ 4√

n

(
1 + 3C(rq, t)

√
logN

(
1√
n
, `locQ (rq), L2(Pn)

))
, (52)

with the constant C(rq, t) =
(3rq

2 +
16B2

Qt

3n + 5BQERn`locQ (rq)
)1/2

.

Proof. The classical Dudley’s entropy integral bound for the empirical Rademacher complexity gives us that

Rn`
loc
Q (rq) ≤ inf

α>0

(
4α+

12√
n

∫ ∞
α

√
logN (ε, `locQ (rq), L2(Pn)) dε

)
. (53)

Observe that all functions in `locQ (rq) take value in [0, BQ], which implies for all ε ≥ BQ that, N (ε, `locQ (rq), L2(Pn)) ≤
N (ε, `locQ (rq), L∞(Pn)) = 1 and consequently the integrand in Eq. 53 vanishes on [BQ,∞). Hence we have that

Rn`
loc
Q (rq) ≤ inf

α>0

(
4α+

12√
n

∫ BQ

α

√
logN (ε, `locQ (rq), L2(Pn)) dε

)

≤ 4√
n

+
12√
n

∫ BQ

1√
n

√
logN (ε, `locQ (rq), L2(Pn)) dε

≤ 4√
n

+
12√
n
BQ

√
logN

(
1√
n
, `locQ (rq), L2(Pn)

)
,

where we used the fact thatN (ε, `locQ (rq), L2(Pn)) is decreasing in terms of ε for the last inequality. This proves the estimate
Eq. 51.

In order to establish the estimate Eq. 52, we shall bound the empirical error Pn‖Qθ −Q∗‖2F with high probability. Let us
consider the class of functions `locQ2(rq) = {‖Qθ −Q∗‖2F : θ ∈ Θ, P‖Qθ −Q∗‖2F ≤ rq}, whose element takes values in
[0, B2

Q]. Moreover, we see it holds for all ‖Qθ−Q∗‖2F ∈ `locQ2(rq) that P‖Qθ−Q∗‖4F ≤ B2
QP‖Qθ−Q∗‖2F ≤ B2

Qrq . Hence,
by applying Theorem 2.1 in [15] (with F = `locQ2(rq), a = 0, b = B2

Q, α = 1/4 and r = B2
Qrq) and the Cauchy-Schwarz

1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209

Understanding Deep Learning with Reasoning Layer

inequality, we can deduce that, for each t > 0, it holds with probability at least 1− e−t that

Pn‖Qθ −Q∗‖2F ≤ P‖Qθ −Q∗‖2F +
5

2
ERn`locQ2(rq) +

√
2B2

Qrqt

n
+B2

Q

13t

3n

≤ rq +
5

2
ERn`locQ2(rq) +

rq
2

+
B2
Qt

n
+B2

Q

13t

3n

≤ 3rq
2

+ 5BQERn`locQ (rq) +
16B2

Qt

3n
.

Consequently, we see it holds with probability at least 1− e−t that, N (ε, `locQ (rq), L2(Pn)) = 1 for all ε ≥ C(rq, t), with
the constant C(rq, t) defined as in the statement of Proposition F.1. Substituting this fact into the integral bound Eq. 53 and
following the same argument as above, we can conclude Eq. 52 with probability at least 1− e−t.

Now we proceed to prove the estimate of the expected Rademacher complexity ERn`locQ (rq), i.e., Eq. 50 in Theorem F.3.

Proposition F.2. Assume the same setting as in Proposition F.1. Then it holds for any r, t > 0 that

ERn`locQ (rq) ≤ n−
1
2

[(
C1(n, t)(

√
r +MCvg(k))2 + C2(n, t)

) 1
2

+ C3(n, t) + 4

]
, (54)

where C1(n, t), C2(n, t) and C3(n, t) the constants defined as in Eq. 57, Eq. 58 and Eq. 59, respectively.

Proof. Let r, t > 0 be fixed throughout this proof. Since it holds for all ε > 0 and n ∈ N that N (ε, `locQ (rq), L2(Pn)) ≤
N (ε, `Q, L∞), we can deduce from Proposition F.1 that

ERn`locQ (rq) ≤ 4√
n

(
1 + 3

[
C(rq, t)(1− e−t) +BQe

−t]√logN
(

1√
n
, `Q, L∞

))
, (55)

with the constants BQ and C(rq, t) defined as in the statement of Proposition F.1.

The above estimate gives an implicit upper bound of ERn`locQ (rq) since C(rq, t) also involves ERn`locQ (rq). Now we shall
introduce the notationNn

Q = N (1√
n
, `Q, L∞) and derive an explicit upper bound of ERn`locQ (rq). By rearranging the terms

in Eq. 55 and using the definition of C(rq, t), we can obtain that

√
n

4
ERn`locQ (rq)− 1− 3BQe

−t
√

logNn
Q

≤ 3(1− e−t)

√(
3rq
2

+
16B2

Qt

3n
+ 5BQERn`locQ (rq)

)
logNn

Q.

(56)

We shall assume without loss of generality that ERn`locQ (rq) ≥ 4√
n

(
1 + 3BQe

−t
√

logNn
Q

)
, since otherwise we have a

trivial estimate that ERn`locQ (rq) ≤ 4n−
1
2A1, with A1 = 1 + 3BQe

−t
√

logNn
Q. Then by squaring both sides of Eq. 56

and rearranging the terms, we get that

n

16
(ERn`locQ (rq))

2 −
(√

n

2
A1 + 45(1− e−t)2BQ logNn

Q

)
ERn`locQ (rq)

+A2
1 − 9(1− e−t)2A2 logNn

Q ≤ 0,

1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264

Understanding Deep Learning with Reasoning Layer

with the constant A2 =
3rq
2 +

16B2
Qt

3n . This implies that

ERn`locQ (rq) ≤
8

n

[√
nA1

2
+ 45(1− e−t)2BQ logNn

Q +

([√nA1

2
+ 45(1− e−t)2BQ logNn

Q

]2
− n

4

[
A2

1 − 9(1− e−t)2A2 logNn
Q

]) 1
2
]

= n−
1
2

[
4A1 +

360√
n

(1− e−t)2BQ logNn
Q +

([
4A1 +

360√
n

(1− e−t)2BQ logNn
Q

]2
− 16

[
A2

1 − 9(1− e−t)2A2 logNn
Q

]) 1
2
]
.

Hence, for each t > 0, by introducing the following constants

C1(n, t) = 216(1− e−t)2σ−2
b L4 logNn

Q, (57)

C2(n, t) =
[
4A1 +

360√
n

(1− e−t)2BQ logNn
Q

]2 − 16A2
1 + t(1− e−t)2

768B2
Q

n
logNn

Q

=

(
1 + 3BQe

−t
√

logNn
Q +

45√
n

(1− e−t)2BQ logNn
Q

)
2880√
n

(1− e−t)2BQ logNn
Q

+ t(1− e−t)2
768B2

Q

n
logNn

Q, (58)

C3(n, t) = 12BQe
−t
√

logNn
Q +

360√
n

(1− e−t)2BQ logNn
Q, (59)

with BQ = sup(θ,x)∈Θ×X ‖Qθ(x)−Q∗(x)‖F ≤ 2
√
dL and Nn

Q = N (1√
n
, `Q, L∞), we can deduce that

ERn`locQ (rq) ≤ n−
1
2

[(
C1(n, t)(

√
r +MCvg(k))2 + C2(n, t)

) 1
2

+ C3(n, t) + 4

]
.

1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319

Understanding Deep Learning with Reasoning Layer

G. Poof of Algorithm properties of RNN
We denote by RNNkφ a recurrent neural network that has k unrolled RNN cells and view it as a neural algorithm. It has been
proposed in [18] to use RNN to learn an optimization algorithm where the update steps in each iteration are given by the
operations in an RNN cell

yk+1 ← RNNcell (Q, b,yk) := V σ
(
WLσ

(
WL−1 · · ·W 2σ

(
W 1

1 yk +W 1
2 gk

)))
. (60)

In the above equation, we take a specific example where the RNNcell is a multi-layer perception (MLP) with activations
σ = RELU that takes the current iterate yk and the gradient gk = Qyk + b as inputs.

(I) Stable Region. First, we show that when the parameters satisfy cφ := supQ ‖V ‖2‖W 1
1 + W 1

2Q‖2
∏L
l=2 ‖W l‖2 < 1,

the operations in RNNcell are strictly contractive, i.e., ‖yk+1 − yk‖2 ≤ cφ‖yk − yk−1‖2.

Proof. By definition,

‖yk+1 − yk‖2 = ‖V σ
(
WLσ

(
WL−1 · · ·W 2σ

(
W 1

1 yk +W 1
2 gk

)))
− V σ

(
WLσ

(
WL−1 · · ·W 2σ

(
W 1

1 yk−1 +W 1
2 gk−1

)))
‖2

≤ ‖V ‖2‖σ
(
WLσ

(
WL−1 · · ·W 2σ

(
W 1

1 yk +W 1
2 gk

)))
− σ

(
WLσ

(
WL−1 · · ·W 2σ

(
W 1

1 yk−1 +W 1
2 gk−1

)))
‖2

Since the activation function σ = RELU satisfies the inequality that ‖σ(x)− σ(x′)‖2 ≤ ‖x− x′‖2 for any x,x′, we have

‖yk+1 − yk‖2 ≤ ‖V ‖2‖WLσ
(
WL−1 · · ·W 2σ

(
W 1

1 yk +W 1
2 gk

))
−WLσ

(
WL−1 · · ·W 2σ

(
W 1

1 yk−1 +W 1
2 gk−1

))
‖2.

Similarly, we can obtain

‖yk+1 − yk‖2
≤ ‖V ‖2‖WL‖2 · · · ‖W 2‖2‖

(
W 1

1 yk +W 1
2 gk

)
−
(
W 1

1 yk−1 +W 1
2 gk−1

)
‖2

= ‖V ‖2‖WL‖2 · · · ‖W 2‖2‖(W 1
1 +QW 1

2)(yk − yk−1)‖2
≤ ‖V ‖2‖WL‖2 · · · ‖W 2‖2‖W 1

1 +QW 1
2 ‖2‖yk − yk−1‖2

≤ cφ‖yk − yk−1‖2.

Therefore, if cφ < 1, then the operation is strictly contractive.

(II) Stability. We shall show the neural algorithm RNNkφ has a stability constant Stab(k, φ) = O(1− ckφ) (see the definition
of stability in Sec 3).

Proof. Let us consider two quadratic problems induced by (Q, b) and (Q′, b′), and denote the corresponding outputs of
RNNkφ as yk = RNNkφ(Q, b) and y′k = RNNkφ(Q′, b′).

Denote cQφ = ‖V ‖2‖W 1
1 + W 1

2Q‖2
∏L
l=2 ‖W l‖2, cQ

′

φ = ‖V ‖2‖W 1
1 + W 1

2Q
′‖2
∏L
l=2 ‖W l‖2, and ĉφ :=

‖V ‖2‖W 1
2 ‖2

∏L
l=2 ‖W l‖2. First, we see that

‖yk‖2 ≤ cQφ ‖yk−1‖2 + ĉφ‖b‖2 ≤ (cQφ)k‖y0‖2 + ĉφ‖b‖2
k∑
i=1

(cQφ)i−1

=
ĉφ‖b‖2(1− (cQφ)k)

1− cQφ
≤ ĉφ‖b‖2

1− cQφ
.

(61)

1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374

Understanding Deep Learning with Reasoning Layer

Similar conclusion holds for y′k. Then, by following a similar argument as that for the proof of the stable region, we can
deduce from y0 = y′0 that

‖yk − y′k‖2
≤ ‖V ‖2‖WL‖2 · · · ‖W 2‖2‖(W 1

1 +W 2
1Q)yk−1 − (W 1

1 +W 2
1Q
′)y′k−1 +W 2

1 (b− b′)‖2
≤ ‖V ‖2‖WL‖2 · · · ‖W 2‖2(‖W 1

1 +W 2
1Q‖2‖yk−1 − y′k−1‖2 + ‖Q−Q′‖2‖W 2

1 ‖2‖y′k−1‖2
+ ‖W 2

1 ‖2‖(b− b′)‖2)

≤ cQφ ‖yk−1 − y′k−1‖2 + ĉφ‖Q−Q′‖2
ĉφ‖b′‖2
1− cQ′φ

+ ĉφ‖b− b′‖2

≤ (cQφ)k‖y0 − y′0‖2 +

(
ĉ2φ‖b′‖2
1− cQ′φ

‖Q−Q′‖2 + ĉφ‖b− b′‖2

)
k∑
i=1

(cQφ)i−1

=
ĉ2φ‖b′‖2
1− cQ′φ

1− (cQφ)k

1− cQφ
‖Q−Q′‖2 + ĉφ

1− (cQφ)k

1− cQφ
‖b− b′‖2.

Therefore, the stability constant is of the magnitude O(1− ckφ).

(III) Sensitivity. We now proceed to analyze the sensitivity of the neural algorithm RNNkφ as defined in Sec 3. Note that
the strong non-linearity in the RNN cell and the high-dimensionality of the parameter space significantly complicate the
analysis of the Lipschitz dependence of RNNkφ with respect to its parameter φ = {W 1

1 ,W
1
1 ,W

2, . . . ,WL, V }. To simplify
our presentation, we shall assume the parameter φ are constrained in a compact subset Φ of the stable region, and show
the neural algorithm RNNkφ has a sensitivity Sens(k) = O(1− (infφ∈Φ cφ)k). A rigorous sensitivity analysis of RNN with
general weights is out of the scope of this paper.

Proof. Let the range of parameters Φ is a compact subset of the stable region, such that for all φ ∈ Φ, cφ :=

supQ ‖V ‖2‖W 1
1 + W 1

2Q‖2
∏L
l=2 ‖W l‖2 ≤ c0 < 1 for some constant c0. Let φ, φ′ ∈ Φ be two given sets of param-

eters. For each k ∈ N, we denote yk = RNNkφ(Q, b) and y′k = RNNkφ′(Q, b) the outputs corresponding to the parameters φ
and φ′, respectively. Then we have that

‖yk − y′k‖2 = ‖RNNcellφ(Q, b,yk−1)− RNNcellφ′(Q, b,y
′
k−1)‖2

≤ ‖RNNcellφ(Q, b,y′k−1)− RNNcellφ′(Q, b,y′k−1)‖2
+ ‖RNNcellφ(Q, b,yk−1)− RNNcellφ(Q, b,y′k−1)‖2
≤ ‖RNNcellφ(Q, b,y′k−1)− RNNcellφ′(Q, b,y′k−1)‖2 + cφ‖yk−1 − y′k−1‖2

If there exists a constant K, independent of k, φ, φ′, such that

‖RNNcellφ(Q, b,y′k−1)− RNNcellφ′(Q, b,y′k−1)‖2 ≤ K‖φ− φ′‖2, (62)

then we can obtain from y0 = y′0 that

‖yk − y′k‖2 ≤ v‖φ− φ′‖2 + cφ‖yk−1 − y′k−1‖2

≤ K‖φ− φ′‖2
k∑
i=1

ci−1
φ =

1− ckφ
1− cφ

K‖φ− φ′‖2.

The fact that cφ ≤ c0 < 1 for some constant c0 implies that the magnitude of sensitivity is O(1− (infφ∈Φ cφ)k).

Now it remains to establish the estimate Eq. 62. For each k ∈ N, φ = {W 1
1 ,W

1
1 ,W

2, . . . ,WL, V } and l = 2, · · · , L, we
introduce the notation

f lφ := W lσ
(
W l−1 · · ·W 2σ

(
W 1

1 yk +W 1
2 gk

))
, (63)

1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429

Understanding Deep Learning with Reasoning Layer

with f1
φ = W 1

1 yk +W 1
2 gk. Then we have for each l = 1, · · · , L that

‖f lφ‖2 ≤
l∏

j=2

‖W j‖2
(
‖W 1

1 +W 1
2Q‖2‖yk‖2 + ‖W 1

2 ‖2‖b‖2
)

= cl‖yk‖2 + ĉl‖b‖2, (64)

with the constants cl :=
(∏l

j=2 ‖W j‖2
)
‖W 1

1 + W 1
2Q‖2, ĉl :=

(∏l
j=2 ‖W j‖2

)
‖W 1

2 ‖2 for all l = 1, . . . , L. Then by
induction, we can see that

‖fLφ − fLφ′‖2 = ‖WLσ(fL−1
φ)−W ′Lσ(fL−1

φ′)‖2
≤ ‖WL −W ′L‖2‖fL−1

φ′ ‖2 + ‖WL‖2‖fL−1
φ − fL−1

φ′ ‖2

≤ ‖WL −W ′L‖2‖fL−1
φ′ ‖2 + ‖WL‖2

(
‖WL−1 −W ′L−1‖2‖fL−2

φ′ ‖2

+ ‖WL−1‖2‖fL−2
φ − fL−2

φ′ ‖2
)

≤
L∑
l=2

(L∏
j=l+1

‖W j‖2
)
‖W l −W ′l‖2‖f l−1

φ′ ‖2 +

(L∏
l=2

‖W l‖2
)
‖f1
φ − f1

φ′‖2.

Thus we have that

‖RNNcellφ(Q, b,yk)− RNNcellφ′(Q, b,yk)‖2 = ‖V σ(fLφ)− V ′σ(fLφ′)‖2
≤ ‖V − V ′‖2‖fLφ′‖2 + ‖V ‖2‖fLφ − fLφ′‖2

≤ ‖V − V ′‖2‖fLφ′‖2 + ‖V ‖2
[L∑
l=2

(L∏
j=l+1

‖W j‖2
)
‖W l −W ′l‖2‖f l−1

φ′ ‖2

+

(L∏
l=2

‖W l‖2
)
‖f1
φ − f1

φ′‖2
]
.

Furthermore, we see that

‖f1
φ − f1

φ′‖2 = ‖(W 1
1 +W 1

2Q)yk +W 1
2 b− (W ′11 +W ′12 Q)yk +W ′12 b‖2

≤ ‖W 1
1 −W ′11 + (W 1

2 −W ′12)Q‖2‖yk‖2 + ‖W 1
2 −W ′12 ‖2‖b‖2

≤ ‖W 1
1 −W ′11 ‖‖yk‖2 + ‖W 1

2 −W ′12 ‖(‖Q‖2‖yk‖2 + ‖b‖2),

from which we can conclude that

‖RNNcellφ(Q, b,yk)− RNNcellφ′(Q, b,yk)‖2

≤ ‖fLφ′‖2‖V − V ′‖2 +

L∑
l=2

[
‖V ‖2

(L∏
j=l+1

‖W j‖2
)
‖f l−1
φ′ ‖2

]
‖W l −W ′l‖2

+ ‖V ‖2
(L∏
l=2

‖W l‖2
)[
‖W 1

1 −W ′11 ‖‖yk‖2 + ‖W 1
2 −W ′12 ‖(‖Q‖2‖yk‖2 + ‖b‖2)

]
.

Note that we have assumed that the set of parameters Φ is a compact subset of the stable region and (Q, b) ∈ Sd×dµ,L × B are
bounded, which imply that for all φ, φ′ ∈ Φ, the corresponding outputs (yk)k∈N and (y′k)k∈N are uniformly bound, and
hence ‖f lφ′‖2 is bounded for all k and l = 1, . . . , L (see Eq. 64). Consequently, we see there exists a constant K such that
Eq. 62 is satisfied. This finishes the proof of the desired sensitivity result.

(IV) Convergence. For the convergence of RNNkφ, we can only give the best case guarantee. It is easy to see that with the
following choice of φ, RNNkφ can represent GDks :

V = [I,−I], W 1
1 = [I;−I]>, W 2

1 = [−sI; sI]>, W l = I for l = 2, · · · , L. (65)

Therefore, for the best case, RNNkφ can converge at least as fast as GDks .

1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484

Understanding Deep Learning with Reasoning Layer

H. Experiment Details
Here we state the configuration details of the experiments.

• Convexity and smoothness. They are set to be µ = 0.1 and L = 1, respectively.

• Dataset. 10000 pairs of (x, b) are generated in the following way: 10000 many x are uniformly sampled from
[−5, 5]10 × U5×5, where U5×5 denotes the space of all 5 × 5 unitary matrices. Each input x actually is a tuple
x = (zx, Ux) where zx ∈ [−5, 5]10 and Ux is unitary. 10000 many b are uniformly sampled from [−5, 5]5. These
10000 pairs are viewed as the whole dataset.

• Training set Sn. During training, n samples are randomly drawn from these 10000 data points as the training set. The
labels of these training samples are given by y = Opt(Q∗(x), b).

• More details on Q∗(x). As mentioned before, each x is a tuple x = (zx, Ux). Then we implement Q∗(x) =
Uxdiag([g∗(zx), µ, L])U>x , where g∗ is a 2-layer dense neural network with hidden dimension 3, output dimension
3, and with randomly fixed parameters. Note that in the final layer of g∗, there is a sigmoid-activation that scales the
output to the range [0, 1] and then the range is further re-scaled to [µ,L]. Finally, g∗(zx) is concatenated with [µ,L]
to form a 5-dimensional vector with smallest and largest value to be µ and L respectively. This vector represents the
eigenvalues of Q∗(x).

• Architecture of Qθ. Qθ has the same form as Q∗(x), except that the network g∗ in Q∗ becomes gθ in Qθ. That is,
Qθ(x) = Uxdiag([gθ(zx), µ, L])U>x . Here gθ is also a 2-layer dense neural network with output dimension 3, but
the hidden dimension can vary. In the reported results, when we say hidden dimension=0, it means gθ is a one-layer
network.

For the experiments that compare RNNkφ with GDkφ and NAGkφ, they are conducted under the ‘learning to learn’ scenario, with
the following modifications compared to the above setting.

• Dataset. Instead of sampling (x, b), here we directly sample the problem pairs (Q, b). Similarly, 10000 pairs of (Q, b)
are sampled uniformly from S10×10

µ,L × [−5, 5]10.

• Architecture of RNNkφ. For each cell in RNNkφ, it is a 4-layer dense neural network with hidden dimension 20-20-20.

For all experiments, each model has been trained by both ADAM and SGD with learning rate searched over [1e-2,5e-3,1e-
3,5e-4,1e-4], and only the best result is reported. Furthermore, error bars are produced by 20 independent instantiations of
the experiments. The experiments are mainly run parallelly (since we need to search the best learning rate) on clusters which
have 416 nodes where on each node there are 24 Xeon 6226 CPU @ 2.70GHz with 192 GB RAM and 1x512 GB SSD.

