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Understanding Deep Learning with Reasoning Layer

Anonymous Authors1

Abstract
Recently, there is a surge of interest in combin-
ing deep learning models with reasoning in or-
der to handle more sophisticated learning tasks.
In many cases, a reasoning task can be solved
by an iterative algorithm. This algorithm is of-
ten unrolled, and used as a specialized layer in
the deep architecture, which can be trained end-
to-end with other neural components. Although
such hybrid deep architectures have led to many
empirical successes, theoretical understandings
of such architectures, especially the interplay be-
tween algorithm layers and other neural layers,
remains largely unexplored. In this paper, we take
an initial step toward an understanding of such
hybrid deep architectures by showing that proper-
ties of the algorithm layers, such as convergence,
stability and sensitivity, are intimately related to
the approximation and generalization abilities of
the end-to-end model. Furthermore, our analysis
matches nicely with experimental observations
under various conditions, suggesting that our the-
ory can provide useful guidelines for designing
deep architectures with reasoning layers.

1. Introduction
Many real world applications require perception and reason-
ing to work together to solve a problem. Perception refers
to the ability to understand and represent inputs, while rea-
soning refers to the ability to follow prescribed steps and
derive answers satisfying certain structures or constraints.
To tackle such sophisticated learning tasks, recently, there
is a surge of interests in combining deep perception models
with reasoning modules.

Typically, a reasoning module is stacked on top of a neu-
ral module, and treated as an additional layer of the overall
deep architecture; then all the parameters in the architec-
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Anonymous Country. Correspondence to: Anonymous Author
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ture are optimized end-to-end with loss gradients (Fig 1).
Very often these reasoning modules can be implemented
as unrolled iterative algorithms, which can solve more so-
phisticated tasks with carefully designed and interpretable
operations. For instance, SATNet [1] integrated a satisfi-
ability solver into its deep model as a reasoning module;
E2Efold [2] used a constrained optimization algorithm on
top of a neural energy network to predict and reasoning
about RNA structures. [3] used optimal transport algorithm
as a reasoning module for learning to sort. Other algorithms
such as ADMM [4, 5], Langevin dynamics [6], inductive
logic programming [7], DP [8], k-means clustering [9], be-
lief propagation [10], power iterations [11] are also used as
differentiable reasoning modules in deep models for various
learning tasks. Thus in the reminder of the paper, we will
use reasoning layer and algorithm layer interchangeably.

While these previous works have demonstrated the effective-
ness of combining deep learning with reasoning, theoretical
understandings of such hybrid deep architectures remain
largely unexplored. For instance, what is the benefit of us-
ing a reasoning module based on unrolled algorithms com-
pared to generic architectures such as RNN? How exactly
will the reasoning module affect the generalization ability
of the deep architecture? For different algorithms which
can solve the same task, what are their differences when
used as reasoning modules in deep models? Despite the rich
literature on rigorous analysis of algorithm properties, there
is a paucity of work leveraging these analyses to formally
study the learning behavior of deep architectures containing
algorithm layers. This motivates us to ask the intriguing and
timely question of

How will the algorithm properties of a reasoning
layer affect the learning behavior of deep archi-
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Understanding Deep Learning with Reasoning Layer

tectures containing such layers?

In this paper, we provide a first step toward an answer to this
question by analyzing the approximation and generalization
abilities of such hybrid deep architectures. To the best our
knowledge, such analysis has not been done before and is
challenging in the sense that: 1) The analysis of certain
algorithm properties such as convergence can be complex
by itself; 2) Models based on highly structured iterative
algorithms have rarely been analyzed before; 3) The bound
needs to be sharp enough to match empirical observations.
In this new setting, the complexity of algorithm analysis
and generalization analysis intertwined together, making the
analysis even more challenging.

Summary of results. We find that standard Rademacher
complexity analysis, widely used for neural networks [12,
13, 14], becomes insufficient for explaining behaviors of
hybrid architectures. Thus we resort to a more refined local
Rademacher complexity analysis [15, 16], and find that:

• Relation to algorithm properties. Algorithm properties
such as convergence, stability and sensitivity all play impor-
tant roles in generalization ability of the hybrid architecture.
Generally speaking, an algorithm layer that is faster con-
verging, more stable and less sensitive will be able to better
approximate the joint perception and reasoning task, while
at the same time generalize better.
• Which algorithm? The tradeoff is that a faster converg-
ing algorithm has to be less stable [17]. Therefore, depend-
ing on the actual scenarios, the choice of a better algorithm
layer can be different. Our theorem reveals that when the
neural module is over- or under-parameterized, stability
of the algorithm layer can be more important than its con-
vergence; but when the neural module is about-the-right-
parameterized, a faster converging algorithm layer may give
a better generalization.
• What depth? With deeper algorithm layers, the repre-
sentation ability gets better, but the generalization becomes
worse if the neural module is over/under-parameterized.
Only when it has about-the-right complexity, deeper al-
gorithm layers can induce both better representation and
generalization.
• What if RNN? It has been shown that RNN/GNN can
also represent reasoning and iterative algorithms [18, 14].
We use RNN as an example in Appendix B to demonstrate
that these generic reasoning modules can also be analyzed
under our framework, which explains that RNN layers in-
duce a better representation power but a worse generaliza-
tion ability compared to traditional algorithm layers.
• Experiments. We conduct empirical experiments to val-
idate our theory and show that it matches nicely with ex-
perimental observations under various conditions. These
results suggest that our theory can provide useful practical
guidelines for designing deep architectures with reasoning
layers. Experimental results are presented in Appendix C.

Contributions and limitations. To the best of our knowl-
edge, this is the first result to quantitatively characterize the
effects of algorithm properties on the learning behavior of
hybrid deep architectures with reasoning layers. Our result
reveals an intriguing and previously unknown interplay and
tradeoff between algorithm convergence, stability and sensi-
tivity on the model generalization, and thus provides design
principles for deep architectures with reasoning layers. To
simplify analysis, our initial study is limited to a setting
where the reasoning module is an unconstrained optimiza-
tion algorithm and the neural module outputs a quadratic
energy function. However, our analysis framework can be
extended to more complicated case and the insights will
apply beyond our current setting.

Related theoretical works. Our analysis borrows proof
techniques for analyzing algorithm properties from the opti-
mization literature [17, 19] and for bounding Rademacher
complexity from the statistical learning literature [12, 15, 16,
20, 21], but our focus and results are new. More precisely,
the ‘leave-one-out’ stability of optimization algorithms has
been used to derive generalization bounds [22, 23, 24, 17,
25, 26]. However, all existing analyses are in the context
where the optimization algorithms are used to train and
select the model, while our analysis is based on a funda-
mentally different viewpoint where the algorithm itself is
unrolled and integrated as a layer in the deep model. Also,
existing works on the generalization of deep learning mainly
focus on generic neural architectures such as feed-forward
neural network, recurrent neural network, graph neural net-
work, etc [12, 13, 14]. Complexity of models based on
highly structured iterative algorithms and the relation to
algorithm properties have not been investigated. Further-
more, we are not aware of previous use of local Rademacher
complexity analysis in this context.

2. Setting: Optimization Algorithms as
Reasoning Modules

Very often reasoning can be accomplished by solving an
optimization problem defined by a neural perceptual mod-
ule. For instance, visual SUDOKU puzzle can be solved
using a neural module to perceive the digits and then us-
ing a quadratic optimization module to maximize a logic
satisfiability objective [1]. RNA folding problem can be
tackled using a neural energy model to capture pairwise
relations between RNA bases and a constrained optimiza-
tion module to minimize the energy with additional pairing
constraints to obtain a folding [2]. In a broader context,
MAML [27, 28] also has a neural module for joint initial-
ization and a reasoning module that performs optimization
steps for task-specific adaptation. Other examples include
[29, 6, 30, 31, 32, 33, 34].

As an initial attempt to analyze deep architectures with
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reasoning layers, we will restrict our analysis to a simple
case where Eθ(x,y) in Fig.1 is quadratic in y. A reason is
that the analysis of advanced algorithms such as Nesterov
accelerated gradients will become very complex for general
cases. Similar problems occur in [17] which also restricts
the proof to quadratic objectives. Specifically:

Problem Setting: Consider a hybrid architecture where
the neural module is an energy function in form of
Eθ((x, b),y) = 1

2y
>Qθ(x)y + b>y, where Qθ is a neu-

ral network that maps x to a matrix. Each energy can be
uniquely represented by (Qθ(x), b), so we can write the
overall architecture as

fφ,θ(x, b) := Algkφ(Qθ(x), b). (1)

Given samples Sn = {((x1, b1),y∗1), · · · , ((xn, bn),y∗n)},
where the labels y∗ are given by the exact minimizer Opt
of the corresponding Q∗, i.e., y∗ = Opt(Q∗(x), b), the
learning problem is to find the best model fφ,θ from the
space F := {fφ,θ : (φ, θ) ∈ Φ × Θ} by minimizing the
empirical loss function

minfφ,θ∈F
1
n

∑n
i=1`φ,θ(xi, bi), where (2)

`φ,θ(x, b) := ‖Algkφ (Qθ(x), b)− Opt(Q∗(x), b)‖2. Fur-
thermore, we assume:

• BothQθ andQ∗ mapX to Sd×dµ,L where Sd×dµ,L is the space
of symmetric positive definite (SPD) matrices with µ and L
as its smallest and largest singular values. Thus the induced
energy functionEθ will be µ-strongly convex andL-smooth,
and the output of Opt is unique.
• The input (x, b) is a pair of random variables where x ∈
X ⊆ Rm and b ∈ B ⊆ Rd. Assume b has mean E[b] = 0
and variance Σb = σ2

b I . Assume x and b are independent,
and their joint distribution follows a probability measure P .
Assume samples in Sn are drawn i.i.d. from P .
• Assume B is bounded, and let M =
sup(Q,b)∈Sd×dµ,L ×B

‖Opt(Q, b)‖2.

Though this setting does not encompass the full complexity
of hybrid deep architectures, it already reveals interesting
connections between algorithm properties of the reasoning
module and the learning behaviors of hybrid architectures.

3. Properties of Algorithms
In this section, we formally define the algorithm properties
of the reasoning module Algkφ, under the problem setting
presented in Sec 2. After that, we compare the correspond-
ing properties of gradient descent, GDkφ, and Nesterov’s
accelerated gradients, NAGkφ, as concrete examples.

(I) Convergence rate of an algorithm portrays how fast
the optimization error decreases as k grows. Formally,
we say Algkφ has a convergence rate Cvg(k, φ) if for

any Q ∈ Sd×dµ,L , b ∈ B, ‖Algkφ(Q, b) − Opt(Q, b)‖2 ≤
Cvg(k, φ)‖Alg0

φ(Q, b)− Opt(Q, b)‖2.

(II) Stability of an algorithm characterizes its robustness to
small perturbations in the optimization objective, which cor-
responds to the perturbation ofQ and b in the quadratic case.
For the purpose of this paper, we say an algorithm Algkφ
is Stab(k, φ)-stable if for any Q,Q′ ∈ Sd×dµ,L and b, b′ ∈ B,
‖Algkφ(Q, b)−Algkφ(Q′, b′)‖2 ≤ Stab(k, φ)‖Q−Q′‖2 +
Stab(k, φ)‖b− b′‖2, where ‖Q−Q′‖2 is the spectral norm
of the matrix Q−Q′.

(III) Sensitivity characterizes the robustness to small pertur-
bations in the algorithm parameters φ. We say the sensitiv-
ity of Algkφ is Sens(k) if it holds for all Q ∈ Sd×dµ,L , b ∈ B,
and φ, φ′ ∈ Φ that ‖Algkφ(Q, b) − Algkφ′(Q, b)‖2 ≤
Sens(k)‖φ − φ′‖2. This concept is referred in the deep
learning community to “parameter perturbation error” or
“sharpness” [35, 36, 37]. It has been used for deriving
generalization bounds of neural networks, both in the
Rademacher complexity framework [12] and PAC-Bayes
framework [38].

(IV) Stable region is the range Φ of the parameters φwhere
the algorithm output will remain bounded as k grows to
infinity, i.e., numerically stable. Only when the algorithms
operate in the stable region, the corresponding Cvg(k, φ),
Stab(k, φ) and Sens(k) will remain finite for all k. It is
usually very difficult to identity the exact stable region, but
a sufficient range can be provided.

GD and NAG. Now we will compare the above four algo-
rithm properties for gradient descent and Nesterov’s accel-
erated gradient method, both of which can be used to solve
the quadratic optimization in our problem setting. Let GDφ
and NAGφ denote the algorithm update steps of GD and
NAG, where the hyperparameter φ corresponds to the step
size. Denote the results of k-step update of GD and NAG
by GDkφ(Q, b) and NAGkφ(Q, b), respectively. The initializa-
tions in the algorithms are set to be zero vectors throughout
this paper. Then their algorithm properties are summarized
in Table 2 in Appendix D, which shows (i) Convergence:
NAG converges faster than GD. (ii) Stability: However, as k
grows, NAG is less stable than GD for a fixed k, in contrast
to their convergence behaviors. This is pointed out in [17],
which proves that a faster converging algorithm has to be
less stable. (iii) Sensitivity: The sensitivity behaves similar
to the convergence, where NAG is less sensitive to step-size
perturbation than GD. Also, the sensitivity of both algo-
rithms gets smaller as k grows larger. (iv): Stable region:
The stable region of GD is larger than that of NAG. It means
a larger step size is allowable for GD that will not lead to
exploding outputs even if k is large. Note that all the other
algorithm properties are based on the assumption that φ is
in the stable region Φ. Furthermore, as k →∞, the space
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Theorem 3.1. Assume the problem setting in Sec 2. Then we have for any t > 0, it holds true that

ERn`locF (r) ≤
√

2dn−
1
2 Stab(k)

(√
(Cvg(k)M +

√
r)2C1(n) + C2(n, t) + C3(n, t) + 4

)
+ Sens(k)BΦ, (3)

where BΦ = 1
2 supφ,φ′∈Φ ‖φ− φ′‖2, Stab(k) = supφ Stab(k, φ), Cvg(k) = supφ Cvg(k, φ), and Ci are constants monotone

in the covering number N ( 1√
n
, `Q, L∞) of `Q with radius 1√

n
and L∞ norm. We refer their exact definitions to Appendix F.

{Algkφ : φ ∈ Φ} will finally shrink to a single function,
which is the exact minimizer {Opt}.

How will the algorithm properties affect the learning behav-
ior of deep architecture with reasoning layers? We provide
the approximation ability analysis in Appendix A and the
generalization analysis in the next section.

4. Generalization Ability
How will algorithm properties affect the generalization
ability of deep architectures with reasoning layers? We
are interested in the generalization gap between the ex-
pected loss and empirical loss, P`φ,θ = Ex,b`φ,θ(x, b)
and Pn`φ,θ = 1

n

∑n
i=1`φ,θ(xi, bi), respectively, where

Pn is the empirical probability measure induced by the
samples Sn. Let `F := {`φ,θ : φ ∈ Φ, θ ∈ Θ} be
the function space of losses of the models. The gener-
alization gap, P`φ,θ − Pn`φ,θ, can be bounded by the
Rademacher complexity, ERn`F , which is defined as
the expectation of the empirical Rademacher complexity,
Rn`F := Eσ supφ∈Φ,θ∈Θ

1
n

∑n
i=1 σi`φ,θ(xi, bi), where

{σi}ni=1 are n independent Rademacher random variables
uniformly distributed over {±1}. Generalization bounds
derived from Rademacher complexity have been studied in
many works [39, 40, 41].

Main Results: [Theorem 3.1]. More specifically, the lo-
cal Rademacher complexity of `F at level r is defined
as ERn`locF (r) where `locF (r) := {`φ,θ : φ ∈ Φ, θ ∈
Θ, P `2φ,θ ≤ r}. This notion is less general than the one
defined in [15, 16] but is sufficient for our purpose. Here we
also define a losses function space `Q := {‖Qθ − Q∗‖F :
θ ∈ Θ} for the neural module Qθ. With these definitions,
Theorem 3.1 shows that the local Rademacher complexity
of the hybrid architecture is intimately related to all aspects
of algorithm properties, namely convergence, stability and
sensitivity, and there is an intriguing trade-off.

Trade-offs between convergence, stability and sensitiv-
ity. Generally speaking, the algorithm convergence Cvg(k)
and sensitivity Sens(k) have similar behavior, but Stab(k)
behaves opposite to them. See illustrations in Fig 2. There-
fore, the way these three quantities interplay in Theorem 3.1
introduces an intriguing trade-off among them, suggesting
in different regime, one may see different generalization
behavior. More specially, depending on the parameteriza-
tion of Qθ, the coefficients C1, C2, and C3 in Eq. 3 may

have different scale, making the local Rademacher com-
plexity bound dominated by different algorithm properties.
Since the coefficients Ci are monotonely increasing in the
covering number of `Q, we expect that: (i) WhenQθ is over-
parameterized, the covering number of `Q becomes large, so
as the three coefficients. Large Ci will reduce the effect of
Cvg(k) and make Eq. 3 dominated by Stab(k); (ii) Inversely,
when Qθ is under-parameterized, the three coefficients get
small, but they still reduce the effect of Cvg(k) given the
constant 4 in Eq. 3, again making it dominated by Stab(k);
(iii) When Qθ has about-the-right parameterization, we
can expect Cvg(k) to play critical roles in Eq. 3 which will
then behave similar to the product Stab(k)Cvg(k), as illus-
trated schematically in Fig 2. We experimentally validate
these implications in Sec C.

Conv(k) or Sens(k)
GD
NAG

Stab(k)
GD
NAG

Conv(k) * Stab(k)
GD
NAG

Figure 2. Overall trend of algorithm properties.

Trade-off of the depth. Combining the above implications
with the approximation ability analysis in Sec A, we can
see that in the above-mentioned cases (i) and (ii), deeper
algorithm layers will lead to better approximation accuracy
but worse generalization. Only in the ideal case (iii), a
deeper reasoning module can induce both better representa-
tion and generalization abilities. This result provides prac-
tical guidelines for some recently proposed infinite-depth
models [42, 43].

5. Conclusion and Discussion
In this paper, we take an initial step toward the theoretical
understanding of deep architectures with reasoning layers.
Our theorem indicates intriguing relation between algorithm
properties of the reasoning module and the approximation
and generalization of the hybrid architecture, which in turns
provide practical guideline for designing reasoning layers.
The assumptions we made in the problem setting are only for
avoiding the non-uniqueness of the reasoning solution and
the instability of the mapping from the reasoning solution
to the neural module. The assumptions could be relaxed if
we can involve other techniques to resolve these issues.
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Pac-bayes bounds for stable algorithms with instance-
dependent priors. In Advances in Neural Information
Processing Systems, pages 9214–9224, 2018.

[26] Saurabh Verma and Zhi-Li Zhang. Stability and gen-
eralization of graph convolutional neural networks. In
Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining,
pages 1539–1548, 2019.

[27] Chelsea Finn, Pieter Abbeel, and Sergey Levine.
Model-agnostic meta-learning for fast adaptation of
deep networks. In Proceedings of the 34th Interna-
tional Conference on Machine Learning-Volume 70,
pages 1126–1135. JMLR. org, 2017.

[28] Aravind Rajeswaran, Chelsea Finn, Sham M Kakade,
and Sergey Levine. Meta-learning with implicit gradi-
ents. In Advances in Neural Information Processing
Systems, pages 113–124, 2019.

[29] David Belanger, Bishan Yang, and Andrew McCallum.
End-to-end learning for structured prediction energy
networks. In Proceedings of the 34th International
Conference on Machine Learning-Volume 70, pages
429–439. JMLR. org, 2017.

[30] Priya Donti, Brandon Amos, and J Zico Kolter. Task-
based end-to-end model learning in stochastic opti-
mization. In Advances in Neural Information Process-
ing Systems, pages 5484–5494, 2017.

[31] Brandon Amos and J Zico Kolter. Optnet: Differen-
tiable optimization as a layer in neural networks. In
Proceedings of the 34th International Conference on
Machine Learning-Volume 70, pages 136–145. JMLR.
org, 2017.

[32] Marin Vlastelica, Anselm Paulus, Vı́t Musil, Georg
Martius, and Michal Rolı́nek. Differentiation of
blackbox combinatorial solvers. arXiv preprint
arXiv:1912.02175, 2019.

[33] Michal Rolı́nek, Paul Swoboda, Dominik Zietlow,
Anselm Paulus, Vı́t Musil, and Georg Martius. Deep
graph matching via blackbox differentiation of com-
binatorial solvers. arXiv preprint arXiv:2003.11657,
2020.

[34] Quentin Berthet, Mathieu Blondel, Olivier Teboul,
Marco Cuturi, Jean-Philippe Vert, and Francis Bach.
Learning with differentiable perturbed optimizers.
arXiv preprint arXiv:2002.08676, 2020.

[35] Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge
Nocedal, Mikhail Smelyanskiy, and Ping Tak Peter
Tang. On large-batch training for deep learning: Gen-
eralization gap and sharp minima. arXiv preprint
arXiv:1609.04836, 2016.

[36] Kenji Kawaguchi, Leslie Pack Kaelbling, and Yoshua
Bengio. Generalization in deep learning. arXiv
preprint arXiv:1710.05468, 2017.

[37] Behnam Neyshabur, Srinadh Bhojanapalli, David
McAllester, and Nati Srebro. Exploring generalization
in deep learning. In Advances in Neural Information
Processing Systems, pages 5947–5956, 2017.

[38] Behnam Neyshabur, Srinadh Bhojanapalli, and Nathan
Srebro. A PAC-bayesian approach to spectrally-
normalized margin bounds for neural networks. In In-
ternational Conference on Learning Representations,
2018.

[39] Vladimir Koltchinskii and Dmitriy Panchenko.
Rademacher processes and bounding the risk of func-
tion learning. In High dimensional probability II,
pages 443–457. Springer, 2000.

[40] Vladimir Koltchinskii. Rademacher penalties and
structural risk minimization. IEEE Transactions on
Information Theory, 47(5):1902–1914, 2001.

[41] Peter L Bartlett and Shahar Mendelson. Rademacher
and gaussian complexities: Risk bounds and struc-
tural results. Journal of Machine Learning Research,
3(Nov):463–482, 2002.

[42] Shaojie Bai, J Zico Kolter, and Vladlen Koltun. Deep
equilibrium models. In Advances in Neural Informa-
tion Processing Systems, pages 688–699, 2019.

[43] Laurent El Ghaoui, Fangda Gu, Bertrand Travacca,
and Armin Askari. Implicit deep learning. arXiv
preprint arXiv:1908.06315, 2019.



330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

Understanding Deep Learning with Reasoning Layer

A. Approximation Ability
How will the algorithm properties affect the approximation ability of deep architecture with reasoning layers? Given a model
space F := {Algkφ (Qθ(x), b) : φ ∈ Φ, θ ∈ Θ}, we are interested in its approximation ability to functions of the form
Opt (Q∗(x), b). More specifically, we define the loss `φ,θ(x, b) := ‖Algkφ (Qθ(x), b)− Opt(Q∗(x), b)‖2, and measure
the approximation ability by infφ∈Φ,θ∈Θ supQ∗∈Q∗ P`φ,θ, where Q∗ := {X × B 7→ Sd×dµ,L } and P`φ,θ = Ex,b[`φ,θ(x, b)].
Intuitively, using a faster converging algorithm, the model Algkφ could represent the reasoning-task structure, Opt, better
and improve the overall approximation ability. Indeed we can prove the following lemma confirming this intuition.

Lemma A.1. (Faster Convergence ⇒ Better Approximation Ability). Assume the problem setting in Sec 2. The
approximation ability can be bounded by two terms:

inf
φ,θ

sup
Q∗∈Q∗

P`φ,θ ≤σbµ−2 inf
θ

sup
Q∗

P‖Qθ(x)−Q∗(x)‖F︸ ︷︷ ︸
approximation ability of the neural module

+M inf
φ∈Φ

Cvg(k, φ)︸ ︷︷ ︸
best convergence

.

With Lemma A.1, we conclude that: A faster converging algorithm can define a model with better approximation ability.
For example, for a fixed k and Qθ, NAG converges faster than GD, so NAGkφ can approximate Opt more accurately than
GDkφ, which is experimentally validated in Sec C.

Similarly, we can also reverse the reasoning, and ask the question that, given two hydrid architectures with the same
approximation error, which architecture has a smaller error in representing the energy function Q∗? We show that this error
is also intimately related to the convergence of the algorithm.

Lemma A.2. (Faster Convergence⇒ Better Representation of Q∗). Assume the problem setting in Sec 2. ∀φ ∈ Φ, θ ∈
Θ, Q∗ ∈ Q∗ := {X × B 7→ Sd×dµ,L }, it holds true that

P`2φ,θ = ε =⇒ P‖Qθ −Q∗‖2F ≤ σ−2
b L4(

√
ε+M · Cvg(k, φ))2. (4)

Lemma A.2 implies the benefit of using an algorithmic layer that aligns with the reasoning-task structure. Here the task
structure is represented by Opt, the minimizer, and convergence measures how well Algkφ is aligned with Opt. Lemma A.2
essentially indicates that if the structure of a reasoning module can better align with the task structure, then it can better
constrain the search space of the underlying neural module Qθ, making it easier to learn, and further lead to better sample
complexity, which we will explain more in the next section.

As a concrete example for Lemma A.2, if GDkφ (Qθ, ·) and NAGkφ (Qθ, ·) achieve the same accuracy for approximating
Opt (Q∗, ·), then the neural module Qθ in NAGkφ (Qθ, ·) will have a better accuracy for approximating Q∗ than the Qθ in
GDkφ (Qθ, ·). In other words, a faster converging algorithm imposes more constraints on the energy function Qθ, making it
approach Q∗ faster.

B. Pros and Cons for RNN as a Reasoning Layer
It has been shown that RNN (or GNN) can represent reasoning and iterative algorithms over structures [18, 14]. For example,
it is proposed to use RNN to learn an optimization algorithm [18] where the update steps in each iteration are given by the
operations in an RNN cell

yk+1 ← RNNcell (Q, b,yk) := V σ
(
WLσ

(
WL−1 · · ·W 2σ

(
W 1

1 yt +W 1
2 gt
)))

. (5)

In the above equation, we take a specific example where the RNNcell is a multi-layer perception (MLP) with activations
σ = RELU that takes yk and the gradient gt = Qyt + b as inputs. Suppose we denote RNNkφ as a recurrent neural network
that has k unrolled RNN cells and view it as a neural algorithm. Can our analysis framework also be used to understand
RNNkφ and how will its behavior compare with other more interpretable algorithm layers such as GDkφ and NAGkφ?

We view RNNkφ as an algorithm and summarize its algorithm properties in Table 1. Assume φ = {V,W 1
1 ,W

1
2 ,W

2:L}
is in a stable region cφ := supQ‖V ‖2‖W 1

1 + W 1
2Q‖2

∏L
l=2 ‖W l‖2 < 1, so that the operations in RNNcell are strictly

contractive, i.e., ‖yk+1 − yk‖2 < ‖yk − yk−1‖2. In this case, the stability and sensitivity of RNNkφ is guaranteed to be
bounded. Table 1 only shows the best-case convergence, due to a fundamental disadvantage of RNN compared to GD and
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NAG. For an arbitrarily fixed φ in the stable region, the outputs of RNNkφ with different k can form a convergent sequence,
which could coincide with the outputs of GDkφ or NAGkφ with suitable choices of φ. However, in general the outputs of RNNkφ
may not converge to the minimizer Opt. In contrast, GDkφ and NAGkφ has the worst-case convergence guarantee. This property
also allows their sensitivities to decrease to 0 as k grows. In generalization analysis, the worst-case matters more, so GD and
NAG are advantageous.

Table 1. Properties of RNNkφ. (Details are given
in Appendix G.)

Stable region Φ cφ < 1
Stab(k, φ) O(1− ckφ)

Sens(k) O(1− (infφ cφ)k)
minφ Cvg(k, φ) O(ρk) with ρ < 1

The advantage of RNN is its expressiveness, especially given the universal
approximation ability of MLP in the RNNcell. Using existing algorithm as a
reasoning layer restricts the deep model to perform a specific type of reason-
ing. When the needed type of reasoning is unknown or beyond what existing
algorithm is capable of, RNN has the potential to learn new reasoning given
sufficient data.

C. Experimental Validation
Our experiments aim to validate our theoretical prediction with computational simulations, rather than obtaining state-of-
the-art results. We hope the theory together with these experiments can lead to practical guidelines for designing deep
architectures with reasoning layers.

The experiments follow the problem setting in Sec 2. 10000 pairs of (x, b) are uniformly sampled and used as the overall
dataset. During training, n samples are randomly drawn from these 10000 data points as the training set. Each Q∗(x) is
produced by a rotation matrix and a vector of eigenvalues parameterized by a randomly fixed 2-layer dense neural network
with hidden dimension 3. Then the labels are generated according to y = Opt(Q∗(x), b). We train the model Algkφ(Qθ, ·)
on Sn using the loss in Eq. ??. Qθ has the same overall architecture as Q∗ but the hidden dimension could vary. Note that
in all figures, each k corresponds to an independently trained model with k iterations in the algorithm layer, instead of
the sequential outputs of a single model. Each model is trained by ADAM and SGD with learning rate grid-searched from
[1e-2,5e-3,1e-3,5e-4,1e-4], and only the best result is reported. Furthermore, error bars are produced by 20 independent
instantiations of the experiments. See Appendix H for more details.
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Figure 3. Approximation error.

Approximation ability. To validate Lemma A.1, we compare GDkφ (Qθ, ·) and
NAGkφ (Qθ, ·) in terms of approximation accuracy. For various hidden sizes of Qθ,
the results are similar, so we report one representative in Fig 3. The approxima-
tion accuracy aligns with the convergence of the algorithms, showing that faster
converging algorithm can induce better approximation ability.

Faster convergence⇒better Qθ. We report the error of the neural module Qθ
in Fig 4. Note that Algkφ(Qθ, ·) is trained end-to-end, without supervision on
Qθ. In Fig 4, the error of Qθ decreases as k grows, in a rate similar to algorithm
convergence. This validates the implication of Lemma A.2 that, when Algkφ is closer to Opt, it can help the underlying
neural module Qθ to get closer to Q∗.
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Figure 4. P‖Qθ −Q∗‖2F

0 5 10 15 20 25 30
k

0.0

0.5

1.0

ge
ne

ra
liz

at
io

n 
ga

p dim=0
GD
NAG

0 5 10 15 20 25 30
k

0.0

0.5

1.0

1.5

2.0

ge
ne

ra
liz

at
io

n 
ga

p dim=16
GD
NAG

0 5 10 15 20 25 30
k

0

1

2

3

ge
ne

ra
liz

at
io

n 
ga

p dim=32
GD
NAG

Figure 5. Generalization gap
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Figure 6. Algorithm layers vs RNN.

Generalization gap. In Fig 5, we report the generalization gaps, with
hidden sizes ofQθ being 0, 16, and 32, which corresponds to the three
cases (ii), (iii), and (i) discussed under Theorem 3.1, respectively.
Comparing Fig 5 to Fig 2, we can see that the experimental results
match very well with the theoretical implications.

RNN. As discussed in Sec B, RNN can be viewed as neural algo-
rithms. To have a cleaner comparison, we report their behaviors under
the ‘learning to optimize’ senario where the objectives (Q, b) are given. Fig 6 shows that RNN has a better representation
power but worse generalization ability.
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D. Proof of Algorithm Properties
In this section, we study several important properties of gradient descent algorithm (GD) and Nesterov’s accelerated gradient
algorithm (NAG), which have been summarized in Table 2. To simplify the presentation, we shall focus on quadratic
minimization problems as in Section 2 and estimate the sharp dependence on the iteration number k.

Table 2. algorithm properties comparison between GD and NAG. For simplicity, only the order in k is presented. Complete statements
with detailed coefficients and proofs are given in Appendix D.

Alg Cvg(k, φ) Stab(k, φ) Sens(k) Stable region Φ

GDkφ O
(
(1− φµ)k

)
O
(
1− (1− φµ)k

)
O
(
k(1− c0µ)k−1

)
[c0,

2
µ+L ]

NAGkφ O
(
k(1−

√
φµ)k

)
O
(
1− (1−

√
φµ)k

)
O
(
k3(1−√c0µ)k

)
[c0,

4
µ+3L ]

More precisely, in the subsequent analysis, we shall fix the constants L ≥ µ > 0 and assume the objective function is
in the function class Qµ,L, which contains all µ-strongly convex and L-smooth quadratic functions on Rd. Then, for
any given f ∈ Qµ,L, the eigenvalue decomposition enables us to represent the Hessian matrix of f , denoted by Q, as
Q = UΛU>, where Λ is a diagonal matrix comprising of the eigenvalues (λi)

d
i=1 of Q sorted in ascending order, i.e.,

µ ≤ λ1 ≤ . . . ≤ λd ≤ L, and U ∈ Rd×d is an orthogonal matrix whose columns constitute an orthonormal basis of
corresponding eigenvectors of Q. Moreover, we shall denote by Id the d× d identity matrix, and by ||A||2 the spectral norm
of a given matrix A ∈ Rd×d.

We start with the GD algorithm. Let f ∈ Qµ,L, s ≥ 0 be the stepsize, and x0 ∈ Rd be the initial guess. For each
k ∈ N ∪ {0}, we denote by xk+1 the k + 1-th iterate generated by the following recursive formula (cf. the output yk+1 of
GDφ in Section 3):

xk+1 = xk − s∇f(xk). (6)

The following theorem establishes the convergence of Eq. 6 as k tends to infinity, and the Lipschitz dependence of the iterates
(xsk)k∈N in terms of the stepsize s (i.e., the sensitivity of GD). Similar results can be established for general µ-strongly
convex and L-smooth objective functions.

Theorem D.1. Let f ∈ Qµ,L admit the minimiser x∗ ∈ Rd, x0 ∈ Rd and for each s ≥ 0 let (xsk)k∈N∪{0} be the iterates
generated by Eq. 6 with stepsize s. Then we have for all k ∈ N, c0 > 0, s, t ∈ [c0,

2
µ+L ] that

‖xsk − x∗‖2 ≤ (1− sµ)k‖x0 − x∗‖2, ‖xtk − xsk‖2 ≤ Lk(1− c0µ)k−1|t− s|‖x0 − x∗‖2. (7)

Proof. Let Q be the Hessian matrix of f and (λi)
d
i=1 be the eigenvalues of Q. By using the fact that∇f(x∗) = 0 and Eq. 6,

we can obtain for all k ∈ N ∪ {0} and s ≥ 0 that xsk − x∗ = (Id − sQ)(xsk−1 − x∗) = (Id − sQ)k(x0 − x∗).

Since the spectral norm of a matrix is invariant under orthogonal transformations, we have for all s ∈ [c0,
2

µ+L ] that

‖Id − sQ‖2 = ‖Id − sΛ‖2 = max
i=1,...,d

|1− sλi| = max(|1− sµ|, |1− sL|)

≤ 1− sµ.
(8)

Hence, for any given k ∈ N ∪ {0}, the inequality that ‖xsk − x∗‖2 ≤ (‖Id − sQ‖2)k‖x0 − x∗‖2 leads us to the desired
estimate for (‖xsk − x∗‖2)k∈N∪{0}.

Now let t, s ∈ [c0,
2

µ+L ] be given, by using the fact that d
dsx

s
k = k(Id − sQ)k−1Q(x0 − x∗) for all s > 0, we can deduce

from the mean value theorem that

‖xsk − xtk‖2 ≤
(

sup
r∈(c0,

2
µ+L )

‖ ddrx
r
k‖2
)
|t− s|

≤
(

sup
r∈(c0,

2
µ+L )

k(‖Id − rQ‖2)k−1‖Q‖2‖x0 − x∗‖2
)
|t− s|

≤ k

(
sup

r∈[c0,
2

µ+L ]

‖Id − rQ‖2

)k−1

L|t− s|‖x0 − x∗‖2,
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which along with Eq. 8 finishes the proof of the desired sensitivity estimate.

The next theorem shows that Eq. 6 with stepsize s ∈ (0, 2
µ+L ] is Lipschitz stable in terms of the perturbations of f . In

particular, for a quadratic function f ∈ Qµ,L, we shall establish the Lipschitz stability with respect to the perturbations in
the parameters of f . For notational simplicity, we assume x0 = 0 as in Section 3, but it is straightforward to extend the
results to an arbitrary initial guess x0 ∈ Rd.

Theorem D.2. Let x0 = 0, for each i ∈ {1, 2} let fi ∈ Qµ,L admit the minimizer x∗,i ∈ Rd and satisfy∇fi(x) = Qix+ bi
for a symmetric matrix Qi ∈ Rd×d and bi ∈ Rd, for each i ∈ {1, 2}, s > 0 let (xsk,i)k∈N∪{0} be the iterates generated by
Eq. 6 with f = fi and stepsize s, and let M = min(‖x∗,1‖2, ‖x∗,2‖2). Then we have for all k ∈ N, c0 > 0, s ∈ [c0,

2
µ+L ]

that:

‖xsk,1 − xsk,2‖2 ≤
[

1

µ

(
1− (1− sµ)k

)
+ sk(1− sµ)k−1

]
M‖Q1 −Q2‖2

+
1

µ

(
1− (1− sµ)k

)
‖b1 − b2‖2.

Proof. Let us assume without loss of generality that ‖x∗,2‖2 ≤ ‖x∗,1‖2 and c0 ≤ 2
µ+L . We write δxk = xsk,1 − xsk,2 for

each k ∈ N ∪ {0}. Then, by using Eq. 6 and the fact that∇f1(x)−∇f1(y) = Q1(x− y) for all x, y ∈ Rd, we can deduce
that δx0 = 0 and for all k ∈ N ∪ {0} that

δxk+1 = (Id − sQ1)δxk + ek =

k∑
i=0

(Id − sQ1)iek−i,

where ek = −s(∇f1 −∇f2)(xsk,2) for each k ∈ N ∪ {0}. Note that it holds for all k ∈ N ∪ {0} that

‖ek‖2 ≤ s‖(∇f1 −∇f2)(xsk,2)‖2 ≤ s
(
‖Q2 −Q2‖2‖xsk,2‖2 + ‖b1 − b2‖2

)
≤ s
(
‖Q2 −Q2‖2(‖x∗,2‖2 + ‖xsk,2 − x∗,2‖2) + ‖b1 − b2‖2

)
≤ s
(
‖Q2 −Q2‖2(‖x∗,2‖2 + (1− sµ)k‖x0 − x∗,2‖2) + ‖b1 − b2‖2

)
,

where we have applied Theorem D.1 for the last inequality. Thus for each k ∈ N, we can obtain from Eq. 8 and x0 = 0 that

‖δxk‖2 ≤
k−1∑
i=0

(‖Id − sQ1‖2)i‖ek−1−i‖2

≤
k−1∑
i=0

(1− sµ)is
[
(1 + (1− sµ)k−1−i)‖x∗,2‖2‖Q2 −Q2‖2 + ‖b1 − b2‖2

]
=

[
1

µ

(
1− (1− sµ)k

)
+ sk(1− sµ)k−1

]
min(‖x∗,1‖2, ‖x∗,2‖2)‖Q2 −Q2‖2

+
1

µ

(
1− (1− sµ)k

)
‖b1 − b2‖2.

which leads to the desired conclusion due to the fact that M = min(‖x∗,1‖2, ‖x∗,2‖2).

We now proceed to investigate similar properties of the NAG algorithm, whose proofs are more involved due to the fact that
NAG is a multi-step method.

Recall that for any given f ∈ Qµ,L, initial guess x0 ∈ Rd and stepsize s ≥ 0, the NAG algorithm generates iterates
(xk, yk)k∈N∪{0} as follows: y0 = x0 and for each k ∈ N ∪ {0},

xk+1 = yk − s∇f(yk), yk+1 = xk+1 +
1−√µs
1 +
√
µs

(xk+1 − xk). (9)

Note that xk+1, yk+1 are denoted by yk+1, zk+1, respectively, in Section 3.
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We first introduce the following matrix RNAG,s for Eq. 9 for any given function f ∈ Qµ,L and stepsize s ∈ [0, 4
3L+µ ]:

RNAG,s :=

(
(1 + βs)(Id − sQ) −βs(Id − sQ)

Id 0

)
(10)

where βs =
1−√µs
1+
√
µs and Q is the Hessian matrix of f . The following lemma establishes an upper bound of the spectral norm

of the k-th power of RNAG,s, which extends [17, Lemma 22] to block matrices, a wider range of stepsize (s is allowed to be
larger than 1/L) and a momentum parameter βs depending on the stepsize s.

Lemma D.1. Let f ∈ Qµ,L, s ∈ (0, 4
3L+µ ], βs =

1−√µs
1+
√
µs and RNAG,s be defined as in Eq. 10. Then we have for all k ∈ N

that ‖RkNAG,s‖2 ≤ 2(k + 1)(1−√µs)k.

Proof. Let Q = UΛUT be the eigenvalue decomposition of the Hessian matrix Q of f , where Λ is a diagonal matrix
comprising of the corresponding eigenvalues of Q sorted in ascending order, i.e., 0 < µ ≤ λ1 ≤ . . . ≤ λd ≤ L. Then we
have that

RNAG,s =

(
U 0
0 U

)(
(1 + βs)(Id − sΛ) −βs(Id − sΛ)

Id 0

)(
UT 0
0 UT

)
,

which together with the facts that any permutation matrix is orthogonal, and the spectral norm of a matrix is invariant under
orthogonal transformations, gives us the identity that: for all k ∈ N,

‖RkNAG,s‖2 =

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
(

(1 + βs)(Id − sΛ) −βs(Id − sΛ)
Id 0

)k∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

= max
i=1,...n

‖T ks,i‖2, (11)

where Ts,i =
(

(1+βs)(1−sλi) −βs(1−sλi)
1 0

)
for all i = 1, . . . , d.

Now let s ∈ (0, 4
3L+µ ] and i = 1, . . . , d be fixed. If 1− sλi ≥ 0, by using [? ]Lemma 22]chen2018stability (with α = µ,

β = 1/s, h = 1− sλi and κ = β/α = 1/(µs)), we can obtain that

‖T ks,i‖2 ≤ 2(k + 1)

(
1−√µs
1 +
√
µs

(1− µs)
)k/2

≤ 2(k + 1)(1−√µs)k.

We then discuss the case where 1− sλi < 0. Let us write T ks,i =
(
ak bk
ck dk

)
for each k ∈ N∪ {0}, then we have for all k ∈ N

that

ak = (1 + βs)(1− sλi)ak−1 − βs(1− sλi)ck−1, ck = ak−1,

bk = (1 + βs)(1− sλi)bk−1 − βs(1− sλi)dk−1, dk = bk−1,

with a1 = (1 + βs)(1− sλi), b1 = −βs(1− sλi), c1 = 1 and d1 = 0. Since the conditions 1− sλi < 0 and s ≤ 4
3L+µ

imply that λi > 1
s ≥

3L+µ
4 ≥ µ, we see the discriminant of the characteristic polynomial satisfies that

∆ = (1 + βs)
2(1− sλi)2 − 4βs(1− sλi) =

4(1− sλi)
(1 +

√
µs)2

s(µ− λi) > 0,

which implies that there exist l1, l2, l3, l4 ∈ R such that it holds for all k ∈ N ∪ {0} that ak = l1τ
k+1
+ + l2τ

k+1
− and

bk = l3τ
k+1
+ + l4τ

k+1
− , with τ± = (1+βs)(1−sλi)±

√
∆

2 , l1 = 1
τ+−τ− , l2 = − 1

τ+−τ− , l3 = −τ−
τ+−τ− and l4 = τ+

τ+−τ− . Thus, by

letting ρi := max(|τ+|, |τ−|), we have that |ak| = |
∑k
j=0 τ

k−j
+ τ j−| ≤ (k+1)ρki and |bk| = |(−τ+τ−)

∑k−1
j=0 τ

k−1−j
+ τ j−| ≤

kρk+1
i for all k ∈ N ∪ {0}.

Now we claim that the conditions 1 − sλi < 0 and 0 < s ≤ 4
3L+µ imply the estimate that ρi ≤ 1 − √µs < 1. In fact,

the inequality s ≤ 4
3L+µ gives us that µs ≤ 4µ

3L+µ ≤ 1, which implies that βs =
1−√µs
1+
√
µs ≥ 0. Hence we can deduce from

1− sλi < 0 that
√

∆ ≥ (1 + βs)(sλi − 1) and

|τ+| ≤ |τ−| ≤
sλi − 1 +

√
(sλi − 1)s(λi − µ)

1 +
√
µs

≤
sL− 1 +

√
(sL− 1)s(L− µ)

1 +
√
µs

.
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Note that 2− (µ+ L)s ≥ 2− 4(µ+L)
3L+µ ≥ 0, we see that

ρi ≤ 1−√µs ⇐= |τ−| ≤ 1−√µs ⇐= sL− 1 +
√

(sL− 1)s(L− µ) ≤ 1− µs
⇐⇒ (sL− 1)s(L− µ) ≤ (2− (µ+ L)s)2

⇐⇒ (us− 1)((3L+ µ)s− 4) ≥ 0.

Therefore, we have that max(|ak|, |bk|, |ck|, |dk|) ≤ (k + 1)(1−√µs)k, which, along with the relationship between the
spectral norm and Frobenius norm, gives us that ‖T ks,i‖2 ≤ ‖T ks,i‖F ≤ 2(k + 1)(1−√µs)k, and finishes the proof of the
desired estimate for the case with 1− sλi < 0.

As an important consequence of Lemma D.1, we now obtain the following upper bound of the error (‖xk − x∗‖2)k∈N for
any given objective function f ∈ Qµ,L and stepsize s ∈ (0, 4

3L+µ ].

Theorem D.3. Let f ∈ Qµ,L admit the minimizer x∗ ∈ Rd, x0 ∈ Rd, s ∈ (0, 4
3L+µ ] and (xsk, y

s
k)k∈N∪{0} be the iterates

generated by Eq. 9 with stepsize s. Then we have for all k ∈ N ∪ {0} that

‖xsk+1 − x∗‖22 + ‖xsk − x∗‖22 ≤ 8(1 + k)2(1−√µs)2k‖x0 − x∗‖22.

Proof. For any f ∈ Qµ,L, and s ∈ (0, 4
3L+µ ], by letting βs =

1−√µs
1+
√
µs , we can rewrite Eq. 9 as follows: xs0 = x0,

xs1 = x0 − s∇f(x0) and for all k ∈ N,

xsk+1 = (1 + βs)x
s
k − βsxk−1 − s∇f((1 + βs)x

s
k − βsxk−1), (12)

which together with the fact that∇f(x∗) = 0 shows that(
xsk+1 − x∗
xsk − x∗

)
= RNAG,s

(
xsk − x∗
xsk−1 − x∗

)
= RkNAG,s

(
xs1 − x∗
xs0 − x∗

)
where RNAG,s is defined as in Eq. 10. Hence by using xs1 = x0 − s∇f(x0) and Theorem D.1, we can obtain that

‖xsk+1 − x∗‖22 + ‖xsk − x∗‖22 ≤ ‖RkNAG,s‖22(‖xs1 − x∗‖22 + ‖xs0 − x∗‖22)

≤ ‖RkNAG,s‖222‖x0 − x∗‖22,

which together with Lemma D.1 leads to the desired convergence result.

Remark D.1. It is well-known that for a general µ-strongly convex and L-smooth objective function f , one can employ
a Lyapunov argument and establish that the iterates obtained by Eq. 9 with stepsize s ∈ [0, 1

L ] satisfy the estimate that
‖xk − x∗‖22 ≤ 2L

µ (1 − √µs)k‖x0 − x∗‖22. Here by taking advantage of the affine structure of ∇f , we have obtained a
sharper estimate of the convergence rate for a wider range of stepsize s ∈ (0, 4

3L+µ ].

We also would like to emphasize that the upper bound in Theorem D.3 is tight, in the sense that the additional quadratic
dependence on k in the error estimate is inevitable. In fact, one can derive a closed-form expression of RkNAG,s and show that,
for an index i such that the eigenvalue λi is sufficiently close to µ, the squared error for that component is of the magnitude
O((k

√
µs+ 1)2(1−√µs)2k).

We then proceed to analyze the sensitivity of Eq. 9 with respect to the stepsize. The following theorem shows that the
iterates (xk, yk)k∈N∪{0} generated by Eq. 9 depend Lipschitz continuously on the stepsize s.

Theorem D.4. Let f ∈ Qµ,L admit the minimiser x∗ ∈ Rd, x0 ∈ Rd, and for each s ∈ (0, 4
3L+µ ] let (xsk, y

s
k)k∈N∪{0} be

the iterates generated by Eq. 9 with stepsize s. Then we have for all k ∈ N, c0 > 0 and t, s ∈ [c0,
4

3L+µ ] that:

‖xtk − xsk‖2 ≤
(

2L(1 + k) +
4

3
k(k + 1)(k + 5)

(√
µ

c0
+ 2L

))
(1−√µc0)k|t− s|‖x0 − x∗‖2.
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Proof. Throughout this proof we assume without loss of generality that c0 ≤ s < t ≤ 4
3L+µ . Let Q be the Hessian matrix

of f , for each r ∈ [c0,
4

3L+µ ] let βr =
1−√µr
1+
√
µr , and for each k ∈ N ∪ {0} let δxk = xtk − xsk . Then we can deduce from

Eq. 12 that δx0 = 0, δx1 = −(t− s)∇f(x0) and for all k ∈ N that

xtk+1 − xsk+1 = [(1 + βt)x
t
k − βtxtk−1 − t∇f((1 + βt)x

t
k − βtxtk−1)]

− [(1 + βs)x
s
k − βsxsk−1 − s∇f((1 + βs)x

s
k − βsxsk−1)],

which together with the fact that∇f(x)−∇f(y) = Q(x− y) for all x, y ∈ Rd shows that(
δxk+1

δxk

)
= RNAG,t

(
δxk
δxk−1

)
+

(
ek
0

)
with RNAG,t defined as in Eq. 10 and the following residual term

ek := [(1 + βt)x
s
k − βtxsk−1 − t∇f((1 + βt)x

s
k − βtxsk−1)]

− [(1 + βs)x
s
k − βsxsk−1 − s∇f((1 + βs)x

s
k − βsxsk−1)].

Hence we can obtain by induction that: for all k ∈ N,(
δxk+1

δxk

)
= RkNAG,t

(
δx1

δx0

)
+

k−1∑
i=0

RiNAG,t

(
ek−i

0

)
. (13)

Now the facts that ∇f(x∗) = 0 and ∇2f ≡ Q gives us that

ek = (βt − βs)(xsk − xsk−1)− t∇f((1 + βt)x
s
k − βtxsk−1) + s∇f((1 + βs)x

s
k − βsxsk−1)

= (βt − βs)
(
(xsk − x∗)− (xsk−1 − x∗)

)
− tQ

(
(1 + βt)(x

s
k − x∗)− βt(xsk−1 − x∗)

)
+ sQ

(
(1 + βs)(x

s
k − x∗)− βs(xsk−1 − x∗)

)
=
[
(βt − βs)− (t+ tβt − s− sβs)Q

]
(xsk − x∗)−

[
(βt − βs)− (tβt − sβs)Q

]
(xsk−1 − x∗).

Note that one can easily verify that the function g1(r) = βr is
√
µ/c0-Lipschitz on [c0,

4
3L+µ ], and the function g2(r) = rβr

is 1-Lipschitz on [0, 4
3L+µ ]. Moreover, the fact that f ∈ Qµ,L implies that ‖Q‖2 ≤ L. Thus we can obtain from Theorem

D.3 that

‖ek‖2 ≤
(√

µ

c0
+ 2L

)
|t− s|‖xsk − x∗‖2 +

(√
µ

c0
+ L

)
|t− s|‖xsk−1 − x∗‖2

≤
(√

µ

c0
+ 2L

)
|t− s|

√
2(‖xsk − x∗‖22 + ‖xsk−1 − x∗‖22)

≤
(√

µ

c0
+ 2L

)
|t− s|4(1 + k)(1−√µs)k‖x0 − x∗‖2.

This, along with Eq. 13, Lemma D.1 and s < t, gives us that

√
‖δxk+1‖22 + ‖δxk‖22 ≤ ‖RkNAG,t‖2‖δx1‖2 +

k−1∑
i=0

‖RiNAG,t‖2‖ek−i‖2

≤ 2(1 + k)(1−
√
µt)k|t− s|L‖x0 − x∗‖2

+

k−1∑
i=0

2(1 + i)(1−
√
µt)i

(√
µ

c0
+ 2L

)
|t− s|4(1 + k − i)(1−√µs)k−i‖x0 − x∗‖2

=

(
2L(1 + k) +

4

3
k(k + 1)(k + 5)

(√
µ

c0
+ 2L

))
|t− s|(1−√µs)k‖x0 − x∗‖2,

which finishes the proof of the desired estimate due to the fact that s ≥ c0.
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The next theorem is an an analog of Theorem D.2 for the NAC scheme Eq. 9, which shows that the outputs of Eq. 9 with
stepsize s ∈ (0, 4

3L+µ ] is Lipschitz stable with respect to the perturbations of the parameters in f .

Theorem D.5. Let x0 = 0, for each i ∈ {1, 2} let fi ∈ Qµ,L admit the minimizer x∗,i ∈ Rd and satisfy∇fi(x) = Qix+ bi
for a symmetric matrix Qi ∈ Rd×d and bi ∈ Rd, for each i ∈ {1, 2}, s > 0 let (xsk,i)k∈N∪{0} be the iterates generated by
Eq. 9 with f = fi and stepsize s, and let M = min(‖x∗,1‖2, ‖x∗,2‖2). Then we have for all k ∈ N, s ∈ [c0,

4
3L+µ ] that:

‖xsk,1 − xsk,2‖2 ≤
[

2

µ

(
1− (1−√µs)k−1

)
+ s

8(k − 1)k(k + 4)

3
(1−√µs)k−1

]
M‖Q1 −Q2‖2

+
2

µ

(
1− (1−√µs)k

)
‖b1 − b2‖2.

Proof. Let us assume without loss of generality that ‖x∗,2‖2 ≤ ‖x∗,1‖2. We first fix an arbitrary s ∈ [c0,
4

3L+µ ] and write
δxk = xsk,1 − xsk,2 for each k ∈ N ∪ {0}. Then, by using Eq. 12 and the fact that∇f1(x)−∇f1(y) = Q1(x− y) for all
x, y ∈ Rd, we can deduce that δx0 = 0, δx1 = −s(∇f1 −∇f2)(x0) and for all k ∈ N,(

δxk+1

δxk

)
= RNAG,s

(
δxk
δxk−1

)
+

(
ek
0

)
= RkNAG,s

(
δx1

δx0

)
+

k−1∑
j=0

RjNAG,s

(
ek−j

0

)
, (14)

where RNAG,s is defined as in Eq. 10 (with Q = Q1) and the residual term ek is given by

ek := −s(∇f1 −∇f2)((1 + βs)x
s
k,2 − βsxsk−1,2) ∀k ∈ N.

Note that, by using Theorem D.3 and the inequality that x+y ≤
√

2(x2 + y2) for all x, y ∈ R, we have for each k ∈ N that

‖ek‖2 = s‖(Q1 −Q2)((1 + βs)x
s
k,2 − βsxsk−1,2) + (b1 − b2)‖2

≤ s‖Q1 −Q2‖2(‖x∗,2‖2 + 2‖xsk,2 − x∗,2‖2 + ‖xsk−1,2 − x∗,2‖2) + s‖b1 − b2‖2
≤ s‖Q1 −Q2‖2(‖x∗,2‖2 + 2‖xsk,2 − x∗,2‖2 + ‖xsk−1,2 − x∗,2‖2) + s‖b1 − b2‖2
≤ s‖Q1 −Q2‖2(‖x∗,2‖2 + 8(1 + k)(1−√µs)k‖x0 − x∗,2‖2) + s‖b1 − b2‖2.

Hence we can obtain from Eq. 14, Lemma D.1 and x0 = 0 that√
‖δxk+1‖22 + ‖δxk‖22 ≤ 2(k + 1)(1−√µs)k‖δx1‖2 +

k−1∑
j=0

2(j + 1)(1−√µs)j‖ek−j‖2

≤ 2(k + 1)(1−√µs)ks‖b1 − b2‖2 +

k−1∑
j=0

2(j + 1)(1−√µs)j
[
s‖b1 − b2‖2

+ s‖Q1 −Q2‖2(1 + 8(1 + k − j)(1−√µs)k−j)‖x∗,2‖2
]

≤ 2s

k∑
j=0

(j + 1)(1−√µs)j‖b1 − b2‖2 + 2s

k−1∑
j=0

[
(j + 1)(1−√µs)j

+ 8(j + 1)(1 + k − j)(1−√µs)k
]
‖Q1 −Q2‖2 min(‖x∗,1‖2, ‖x∗,2‖2).

Let p = 1−√µs ∈ [0, 1), then we can easily show for each k ∈ N ∪ {0} that (1− p)
∑k
j=0(j + 1)pj =

∑k
j=0 p

j − pk+1,

which implies that
∑k
j=0(j+1)(1−√µs)j ≤ 1−(1−√µs)k+1

µs . Moreover, we have that
∑k−1
j=0 (j+1)(1+k−j) = k(k+1)(k+5)

6
for all k ∈ N. Thus we can simplify the above estimate and deduce for each k ∈ N that

‖δxk+1‖2 ≤
2

µ

(
1− (1−√µs)k+1

)
‖b1 − b2‖2 +

[
2

µ

(
1− (1−√µs)k

)
+ s

8k(k + 1)(k + 5)

3
(1−√µs)k

]
‖Q1 −Q2‖2 min(‖x∗,1‖2, ‖x∗,2‖2).

Moreover, the condition that s ≤ 4
3L+µ ≤

1
µ implies that ‖δx1‖2 = s‖b1 − b2‖2 ≤ 2

µ

(
1− (1−√µs)

)
‖b1 − b2‖2, which

shows that the same upper bound also holds for ‖δx1‖2 and finishes the proof of the desired estimate.
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E. Proof of Approximation Ability
Lemma A.1. (Faster Convergence ⇒ Better Approximation Ability). Assume the problem setting in Sec 2. The
approximation ability can be bounded by two terms:

inf
φ,θ

sup
Q∗∈Q∗

P`φ,θ ≤σbµ−2 inf
θ

sup
Q∗

P‖Qθ(x)−Q∗(x)‖F︸ ︷︷ ︸
approximation ability of the neural module

+M inf
φ∈Φ

Cvg(k, φ)︸ ︷︷ ︸
best convergence

.

Proof. For each φ ∈ Φ, θ ∈ Θ, Q∗ ∈ Q∗,

`φ,θ(x, b) = ‖Algkφ(Qθ(x), b)− Opt(Q∗(x), b)‖2 (15)

≤ ‖Algkφ(Qθ(x), b)− Opt(Qθ(x), b)‖2 + ‖Opt(Qθ(x), b)− Opt(Q∗(x), b)‖2 (16)

≤ Cvg(k, φ)‖Alg0
φ(Qθ(x), b)− Opt(Q∗(x), b)‖2 + ‖Qθ(x)−1b−Q∗(x)−1b‖2 (17)

≤ Cvg(k, φ) ·M + ‖
(
Qθ(x)−1 −Q∗(x)−1

)
b‖2, (18)

where in the last inequality we have used the facts that the initialization is assumed to be zero vector, i.e., Alg0
φ(Qθ(x), b) =

0, and that M ≥ supx∈X ,b∈B Opt(Q∗(x), b). Note that the independence of (x, b) and the fact that Ebb> = σ2
b I imply

that

Eb‖
(
Qθ(x)−1 −Q∗(x)−1

)
b‖22 (19)

= Tr
(
(Qθ(x)−1 −Q∗(x)−1)>(Qθ(x)−1 −Q∗(x)−1)σ2

b I
)

(20)

= σ2
b‖Qθ(x)−1 −Q∗(x)−1‖2F (21)

= σ2
b‖Qθ(x)−1(Qθ(x)−Q∗(x))Q∗(x)−1‖2F (22)

≤ µ−4σ2
b‖Qθ(x)−Q∗(x)‖2F (23)

Therefore, we see from Hölder’s inequality that

Eb‖
(
Qθ(x)−1 −Q∗(x)−1

)
b‖2 ≤ µ−2σb‖Qθ(x)−Q∗(x)‖F . (24)

Collecting all the above inequalities, we have

P`φ,θ ≤ Cvg(k, φ) ·M + σbµ
−2P‖Qθ −Q∗‖F . (25)

Taking supremum over Q∗, we have

sup
Q∗∈Q∗

P`φ,θ ≤ Cvg(k, φ) ·M + σbµ
−2 sup

Q∗∈Q∗
P‖Qθ −Q∗‖F . (26)

Taking infimum over φ and θ, we have

inf
φ∈Φ,θ∈Θ

sup
Q∗∈Q∗

P`φ,θ ≤ inf
φ∈Φ

Cvg(k, φ) ·M + σbµ
−2 inf

θ∈Θ
sup

Q∗∈Q∗
P‖Qθ −Q∗‖F . (27)

Lemma A.2. (Faster Convergence⇒ Better Representation of Q∗). Assume the problem setting in Sec 2. ∀φ ∈ Φ, θ ∈
Θ, Q∗ ∈ Q∗ := {X × B 7→ Sd×dµ,L }, it holds true that

P`2φ,θ = ε =⇒ P‖Qθ −Q∗‖2F ≤ σ−2
b L4(

√
ε+M · Cvg(k, φ))2. (4)

Proof. We shall prove the same conclusion under a slightly weaker assumption that P`2φ,θ ≤ ε. For any x ∈ X , b ∈ B, we
have

`φ,θ(x) ≥ ‖Opt (Qθ(x), b)− Opt (Q∗(x), b) ‖2 − ‖Algkφ (Qθ(x), b)− Opt (Qθ(x), b) ‖2
≥ ‖Qθ(x)−1b−Q∗(x)−1b‖2 − Cvg(k, φ)‖Opt (Qθ(x), b) ‖2 (28)

≥ ‖Qθ(x)−1b−Q∗(x)−1b‖2 −M · Cvg(k, φ). (29)
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Rearranging the terms in the above inequality, we have

‖Qθ(x)−1b−Q∗(x)−1b‖2 ≤ `φ,θ(x) +M · Cvg(k, φ). (30)

By Eq. 22 and the inequality that ‖AB‖F ≤ ‖A‖2‖B‖F for any given A ∈ Rm×r and B ∈ Rr×n, we have that

Eb‖Qθ(x)−1b−Q∗(x)−1b‖22 (31)

= σ2
b‖Qθ(x)−1(Qθ(x)−Q∗(x))Q∗(x)−1‖2F (32)

≥ σ2
b

‖Qθ(x)−Q∗(x)‖2F
‖Q∗(x)‖22‖Qθ(x)‖22

(33)

≥ σ2
b‖Qθ(x)−Q∗(x)‖2F /L4, (34)

which implies that,

‖Qθ(x)−Q∗(x)‖2F ≤ σ−2
b L4Eb‖Qθ(x)−1b−Q∗(x)−1b‖22. (35)

Combining it with Eq. 30 and the fact that (P`φ,θ)
2 ≤ P`2φ,θ, we have

P‖Qθ(x)−Q∗(x)‖2F ≤ σ−2
b L4P (`φ,θ +M · Cvg(k, φ))2 (36)

= σ−2
b L4

(
P`2φ,θ + (M · Cvg(k, φ))2 + 2(M · Cvg(k, φ))P`φ,θ

)
(37)

≤ σ−2
b L4

(
ε+ (M · Cvg(k, φ))2 + 2(M · Cvg(k, φ))

√
ε
)

(38)

= σ−2
b L4

(√
ε+M · Cvg(k, φ)

)2
, (39)

which completes the proof.
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F. Proof of Generalization Ability
In this section, we shall prove the following result, which is a refined version of Theorem 3.1.

Theorem F.1. Assume the problem setting in Sec 2 and let r > 0. Then for any t > 0, with probability at least 1− e−t, the
empirical Rademacher complexity of `locF (r) can be bounded by

Rn`
loc
F (r) ≤

√
2dn−

1
2 Stab(k)

(√
(
√
r +MCvg(k))2C1(n) + C2(n, t, k, r) + 4

)
+ Sens(k)BΦ,

where

C1(n) = 216σ−2
b L4 logN (n−

1
2 , `Q, L2(Pn))

C2(n, t, k, r) =

(
768B2

Qt

n
+ 720BQERn`locQ (rq)

)
logN (n−

1
2 , `Q, L2(Pn)),

rq = σ−2
b L4(

√
r + MCvg(k))2, `locQ (rq) = {‖Qθ − Q∗‖F : θ ∈ Θ, P‖Qθ − Q∗‖2F ≤ rq}, BQ = 2L

√
d, and BΦ =

1
2 supφ1,φ2∈Φ ‖φ1 − φ2‖2.

Furthermore, for any t > 0, the expected Rademacher complexity of `locF (r) can be bounded by

ERn`locF (r) ≤
√

2dn−
1
2 Stab(k)

(√
(
√
r +MCvg(k))2C1(n) + C2(n, t) + C3(n, t) + 4

)
+ Sens(k)BΦ,

where

C1(n) = 216σ−2
b L4 logNQ,

C2(n, t) =

(
1 + 3BQe

−t√logNQ +
45√
n
BQ logNQ

)
2880√
n
BQ logNQ + t

768B2
Q

n
logNQ,

C3(n, t) = 12BQe
−t√logNQ +

360√
n
BQ logNQ,

and NQ = N (n−
1
2 , `Q, L∞).

In order to prove Theorem F.1, we first prove the following theorem, which reduces bounding the empirical Rademacher
complexity of `locF (r) to that of `locQ (rq), and plays an important role in our complexity analysis.

Theorem F.2. Assume the problem setting in Sec 2. Then it holds for any r > 0 that

Rn`
loc
F (r) ≤

√
2d Stab(k)Rn`

loc
Q (rq) + Sens(k)BΦ, (40)

with rq = σ−2
b L4(

√
r + MCvg(k))2, `locQ (rq) = {‖Qθ − Q∗‖F : θ ∈ Θ, P‖Qθ − Q∗‖2F ≤ rq} and BΦ =

1
2 supφ1,φ2∈Φ ‖φ1 − φ2‖2.

Proof. Let k ∈ N be fixed throughout this proof. We first show that the loss `φ,θ is Stab(k)-Lipschtiz in Qθ and Sens(k)-
Lipschitiz in φ. For any (x, b) ∈ X × B, by using the triangle inequality and the definitions of Stab(k, φ′) and Sens(k), we
can obtain the following estimate of the loss:

|`φ,θ(x)− `φ′,θ′(x)|
= |‖Algkφ(Qθ(x), b)− Opt(Q∗(x), b)‖2 − ‖Algkφ′(Qθ′(x), b)− Opt(Q∗(x), b)‖2|
≤ ‖Algkφ(Qθ(x), b)− Algkφ′(Qθ′(x), b)‖2
≤ ‖Algkφ′(Qθ(x), b)− Algkφ′(Qθ′(x), b)‖2 + ‖Algkφ(Qθ(x), b)− Algkφ′(Qθ(x), b)‖2
≤ Stab(k, φ′)‖Qθ(x)−Qθ′(x)‖2 + Sens(k)‖φ− φ′‖2
≤ Stab(k)‖Qθ(x)−Qθ′(x)‖2 + Sens(k)‖φ− φ′‖2.

(41)
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where we write Stab(k) = supφ∈Φ Stab(k, φ) for each k ∈ N.

We then establish a vector contraction inequality, which is a modified version of Corollary 4 in [20] and Lemma 5 in [21].
Note that the empirical Rademacher complexity of `locF can be written as:

Rn`
loc
F (r) =

1

n
Eσ sup

φ,θ

n∑
i=1

σi`φ,θ(xi) =
1

n
Eσ1:n−1

Eσn sup
φ,θ

n−1∑
i=1

σi`φ,θ(xi) + σn`φ,θ(xn), (42)

where the supremum is taken over the parameter space
{

(φ, θ) : φ ∈ Φ, θ ∈ Θ, P `2φ,θ ≤ r
}

.

Let Un−1(φ, θ) =
∑n−1
i=1 σi`φ,θ(xi) for each (φ, θ). We now assume without loss of generality that the supremum can be

attained and let

φ1, θ1 = arg sup
φ,θ

(
Un−1(φ, θ) + `φ,θ(xn)

)
,

φ2, θ2 = arg sup
φ,θ

(
Un−1(φ, θ)− `φ,θ(xn)

)
,

since otherwise we can consider (φ1, θ1) and (φ2, θ2) that are ε-close to the suprema for any ε > 0 and conclude the same
result. Then we can deduce from Eq. 41 that

Eσn sup
φ,θ

n−1∑
i=1

σi`φ,θ(xi) + σn`φ,θ(xn)

=
1

2

(
Un−1(φ1, θ1) + `φ1,θ1(xn) + Un−1(φ2, θ2)− `φ2,θ2(xn)

)
=

1

2

(
Un−1(φ1, θ1) + Un−1(φ2, θ2) + (`φ1,θ1(xn)− `φ2,θ2(xn))

)
≤ 1

2

(
Un−1(φ1, θ1) + Un−1(φ2, θ2)

)
+

1

2

(
Stab(k)‖Qθ1(xn)−Qθ2(xn)‖2 + Sens(k)‖φ1 − φ2‖2

)
≤ 1

2

(
Un−1(φ1, θ1) + Un−1(φ2, θ2)

)
+

1

2
Stab(k)‖Qθ1(xn)−Qθ2(xn)‖F + Sens(k)BΦ,

where BΦ = 1
2 supφ1,φ2∈Φ ‖φ1 − φ2‖2.

For each x ∈ X , θ ∈ Θ and 1 ≤ j, k ≤ d, let Qj,kθ (x) be the j, k-th entry of the matrix Qθ(x). The the Khintchine-Kahane
inequality (see e.g. [20]) gives us that

Eσn sup
φ,θ

n∑
i=1

σi`φ,θ(xi) ≤
1

2
(Un−1(φ1, θ1) + Un−1(φ2, θ2)) + Sens(k)BΦ (43)

+
1

2
Stab(k)

√
2Eεn

∣∣∣∣∑
j,k

εj,kn

(
Qj,kθ1 (xn)−Qj,kθ2 (xn)

) ∣∣∣∣, (44)

where εn = (εj,kn )nj,k=1 are independent Rademacher variables. Hence, if we denote by s(εn) the sign of
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j,k ε

j,k
n

(
Qj,kθ1 (xn)−Qj,kθ2 (xn)

)
and by Q∗j,k(x) be the j, k-th entry of the matrix Q∗(x), then we can obtain that

Eσn sup
φ,θ

n∑
i=1

σi`φ,θ(xi)

≤ Eεn
1

2

[(
Un−1(φ1, θ1) + Stab(k)

√
2s(εn)

∑
j,k

εj,kn Qj,kθ1 (xn)

)

+

(
Un−1(φ2, θ2)− Stab(k)

√
2s(εn)

∑
j,k

εj,kn Qj,kθ2 (xn)

)]
+ Sens(k)BΦ

= Eεn
1

2

[(
Un−1(φ1, θ1) + Stab(k)

√
2s(εn)

∑
j,k

εj,kn

(
Qj,kθ1 (xn)−Q∗j,k(xn)

))

+

(
Un−1(φ2, θ2)− Stab(k)

√
2s(εn)

∑
j,k

εj,kn

(
Qj,kθ2 (xn)−Q∗j,k(xn)

))]
+ Sens(k)BΦ.

Then by taking the supremum over (φ, θ) and using the fact that σn is an independent Rademacher variable, we can deduce
that

Eσn sup
φ,θ

n∑
i=1

σi`φ,θ(xi)

≤ Eεn
1

2

[
sup
φ,θ

(
Un−1(φ, θ) + Stab(k)

√
2s(εn)

∑
j,k

εj,kn

(
Qj,kθ (xn)−Q∗j,k(xn)

))

+ sup
φ,θ

(
Un−1(φ, θ)− Stab(k)

√
2s(εn)

∑
j,k

εj,kn

(
Qj,kθ (xn)−Q∗j,k(xn)

))]
+ Sens(k)BΦ

= EεnEσn
[

sup
φ,θ

(
Un−1(φ, θ) + Stab(k)

√
2σn

∑
j,k

εj,kn

(
Qj,kθ (xn)−Q∗j,k(xn)

))]
+ Sens(k)BΦ

= Eεn
[

sup
φ,θ

(
Un−1(φ, θ) + Stab(k)

√
2
∑
j,k

εj,kn

(
Qj,kθ (xn)−Q∗j,k(xn)

))]
+ Sens(k)BΦ,

where we have used the fact that
∑
j,k ε

j,k
n

(
Qj,kθ (xn)−Q∗j,k(xn)

)
is a symmetric random variable in the last line.

By proceeding in the same way for all other σn−1, · · · , σ1, we can obtain the following vector-contraction inequality:

Eσ sup
φ,θ

n∑
i=1

σi`φ,θ(xi) ≤
√

2Stab(k)Eε1:n
[
sup
θ

n∑
i=1

∑
j,k

εj,ki

(
Qj,kθ (xn)−Q∗j,k(xn)

)]
+ nSens(k)BΦ.

(45)
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The first term on the right-hand side can be bounded by using the Cauchy-Schwarz inequality as follows:

Eε1:n

sup
θ

n∑
i=1

∑
j,k

εj,ki

(
Qj,kθ (xn)−Q∗j,k(xn)

)
= Eσ1:n

Eε1:n

sup
θ

n∑
i=1

σi
∑
j,k

εj,ki

(
Qj,kθ (xn)−Q∗j,k(xn)

)
≤ Eσ1:n

Eε1:n

sup
θ

n∑
i=1

σi

√∑
j,k

(εj,ki )2

√∑
j,k

|Qj,kθ (xn)−Q∗j,k(xn)|2


= Eσ1:n

Eε1:n

[
sup
θ

n∑
i=1

σid‖Qθ(xn)−Q∗(xn)‖F

]

= dEσ1:n

[
sup
θ

n∑
i=1

σi‖Qθ(xn)−Q∗(xn)‖F

]
.

(46)

Therefore, bounding the Rademacher complexity of `locF (r) reduces to bounding the Rademacher complexity of the space
of functions ‖Qθ − Q∗‖F . Recall that the supremum is taken over the parameter space where (φ, θ) ∈ Φ × Θ satisfies
P`2φ,θ ≤ r. Note that Lemma A.2 implies that,

P‖Qθ −Q∗‖2F ≤ rq := σ−2
b L4

(√
ε+M · Cvg(k, φ)

)2
. (47)

Hence, by defining the following function space:

`locQ (rq) :=
{
‖Qθ −Q∗‖F : θ ∈ Θ, P‖Qθ −Q∗‖2F ≤ rq

}
, (48)

we can conclude the desired relationship between Rn`locF (r) and Rn`locQ (rq) from the inequalities Eq. 45 and Eq. 46.

With Theorem F.2 in hand, we see that, for each r > 0, in order to obtain the upper bounds of Rn`locF (r) in Theorem F.1, it
suffices to estimate Rn`locQ (rq), i.e., the Rademacher complexity of the function space `locQ (rq).

The following theorem summarizes the estimates for the empirical and expected Rademacher complexity of the local class
`locQ , which will be established in Propositions F.1 and F.2, respectively.

Recall that, for any given ε > 0, a class of functions F and pseudometric ‖ · ‖, the covering numberN (ε,F , ‖ · ‖) is defined
as the cardinality of the smallest subset F̂ of F for which every element of F is within the ε-neighbourhood of some element
of F̂ with respect to the pseudometric ‖ · ‖.
Theorem F.3. Assume the problem setting in Sec 2. Let r > 0, rq = σ−2

b L4(
√
r + MCvg(k))2 and `locQ (rq) = {‖Qθ −

Q∗‖F : θ ∈ Θ, P‖Qθ −Q∗‖2F ≤ rq}. Then for all t > 0, we have with probability at least 1− e−t that

Rn`
loc
Q (rq) ≤ n−

1
2

[(
C1(n)(

√
r +MCvg(k))2 + C2(n, t, k, r)

) 1
2

+ 4

]
, (49)

where

C1(n) = 216σ−2
b L4 logN

(
n−

1
2 , `Q, L2(Pn)

)
,

C2(n, t, k, r) =

(
768B2

Qt

n
+ 720BQERn`locQ (rq)

)
logN

(
n−

1
2 , `Q, L2(Pn)

)
,

and BQ = 2L
√
d.
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Moreover, for all t > 0, we have that

ERn`locQ (rq) ≤ n−
1
2

[(
C1(n)(

√
r +MCvg(k))2 + C2(n, t)

) 1
2

+ C3(n, t) + 4

]
, (50)

where

C1(n) = 216σ−2
b L4 logNQ,

C2(n, t) =

(
1 + 3BQe

−t√logNQ +
45√
n
BQ logNQ

)
2880√
n
BQ logNQ + t

768B2
Q

n
logNQ,

C3(n, t) = 12BQe
−t√logNQ +

360√
n
BQ logNQ

and NQ = N (n−
1
2 , `Q, L∞).

We first establish the estimate for the empirical Rademacher complexity Rn`locQ (rq), i.e., Eq. 49 in Theorem F.3.

Proposition F.1. Assume the problem setting in Sec 2. Let BQ = sup(θ,x)∈Θ×X ‖Qθ(x)−Q∗(x)‖F , and for each r > 0

let rq and `locQ (rq) be defined as in Theorem F.2. Then we have that

Rn`
loc
Q (rq) ≤ 4√

n

(
1 + 3BQ

√
logN

(
1√
n
, `locQ (rq), L2(Pn)

))
. (51)

Moreover, for all t > 0, it holds with probability at least 1− e−t that

Rn`
loc
Q (rq) ≤ 4√

n

(
1 + 3C(rq, t)

√
logN

(
1√
n
, `locQ (rq), L2(Pn)

))
, (52)

with the constant C(rq, t) =
( 3rq

2 +
16B2

Qt

3n + 5BQERn`locQ (rq)
)1/2

.

Proof. The classical Dudley’s entropy integral bound for the empirical Rademacher complexity gives us that

Rn`
loc
Q (rq) ≤ inf

α>0

(
4α+

12√
n

∫ ∞
α

√
logN (ε, `locQ (rq), L2(Pn)) dε

)
. (53)

Observe that all functions in `locQ (rq) take value in [0, BQ], which implies for all ε ≥ BQ that, N (ε, `locQ (rq), L2(Pn)) ≤
N (ε, `locQ (rq), L∞(Pn)) = 1 and consequently the integrand in Eq. 53 vanishes on [BQ,∞). Hence we have that

Rn`
loc
Q (rq) ≤ inf

α>0

(
4α+

12√
n

∫ BQ

α

√
logN (ε, `locQ (rq), L2(Pn)) dε

)

≤ 4√
n

+
12√
n

∫ BQ

1√
n

√
logN (ε, `locQ (rq), L2(Pn)) dε

≤ 4√
n

+
12√
n
BQ

√
logN

(
1√
n
, `locQ (rq), L2(Pn)

)
,

where we used the fact thatN (ε, `locQ (rq), L2(Pn)) is decreasing in terms of ε for the last inequality. This proves the estimate
Eq. 51.

In order to establish the estimate Eq. 52, we shall bound the empirical error Pn‖Qθ −Q∗‖2F with high probability. Let us
consider the class of functions `locQ2(rq) = {‖Qθ −Q∗‖2F : θ ∈ Θ, P‖Qθ −Q∗‖2F ≤ rq}, whose element takes values in
[0, B2

Q]. Moreover, we see it holds for all ‖Qθ−Q∗‖2F ∈ `locQ2(rq) that P‖Qθ−Q∗‖4F ≤ B2
QP‖Qθ−Q∗‖2F ≤ B2

Qrq . Hence,
by applying Theorem 2.1 in [15] (with F = `locQ2(rq), a = 0, b = B2

Q, α = 1/4 and r = B2
Qrq) and the Cauchy-Schwarz
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inequality, we can deduce that, for each t > 0, it holds with probability at least 1− e−t that

Pn‖Qθ −Q∗‖2F ≤ P‖Qθ −Q∗‖2F +
5

2
ERn`locQ2(rq) +

√
2B2

Qrqt

n
+B2

Q

13t

3n

≤ rq +
5

2
ERn`locQ2(rq) +

rq
2

+
B2
Qt

n
+B2

Q

13t

3n

≤ 3rq
2

+ 5BQERn`locQ (rq) +
16B2

Qt

3n
.

Consequently, we see it holds with probability at least 1− e−t that, N (ε, `locQ (rq), L2(Pn)) = 1 for all ε ≥ C(rq, t), with
the constant C(rq, t) defined as in the statement of Proposition F.1. Substituting this fact into the integral bound Eq. 53 and
following the same argument as above, we can conclude Eq. 52 with probability at least 1− e−t.

Now we proceed to prove the estimate of the expected Rademacher complexity ERn`locQ (rq), i.e., Eq. 50 in Theorem F.3.

Proposition F.2. Assume the same setting as in Proposition F.1. Then it holds for any r, t > 0 that

ERn`locQ (rq) ≤ n−
1
2

[(
C1(n, t)(

√
r +MCvg(k))2 + C2(n, t)

) 1
2

+ C3(n, t) + 4

]
, (54)

where C1(n, t), C2(n, t) and C3(n, t) the constants defined as in Eq. 57, Eq. 58 and Eq. 59, respectively.

Proof. Let r, t > 0 be fixed throughout this proof. Since it holds for all ε > 0 and n ∈ N that N (ε, `locQ (rq), L2(Pn)) ≤
N (ε, `Q, L∞), we can deduce from Proposition F.1 that

ERn`locQ (rq) ≤ 4√
n

(
1 + 3

[
C(rq, t)(1− e−t) +BQe

−t]√logN
(

1√
n
, `Q, L∞

))
, (55)

with the constants BQ and C(rq, t) defined as in the statement of Proposition F.1.

The above estimate gives an implicit upper bound of ERn`locQ (rq) since C(rq, t) also involves ERn`locQ (rq). Now we shall
introduce the notationNn

Q = N ( 1√
n
, `Q, L∞) and derive an explicit upper bound of ERn`locQ (rq). By rearranging the terms

in Eq. 55 and using the definition of C(rq, t), we can obtain that

√
n

4
ERn`locQ (rq)− 1− 3BQe

−t
√

logNn
Q

≤ 3(1− e−t)

√(
3rq
2

+
16B2

Qt

3n
+ 5BQERn`locQ (rq)

)
logNn

Q.

(56)

We shall assume without loss of generality that ERn`locQ (rq) ≥ 4√
n

(
1 + 3BQe

−t
√

logNn
Q

)
, since otherwise we have a

trivial estimate that ERn`locQ (rq) ≤ 4n−
1
2A1, with A1 = 1 + 3BQe

−t
√

logNn
Q. Then by squaring both sides of Eq. 56

and rearranging the terms, we get that

n

16
(ERn`locQ (rq))

2 −
(√

n

2
A1 + 45(1− e−t)2BQ logNn

Q

)
ERn`locQ (rq)

+A2
1 − 9(1− e−t)2A2 logNn

Q ≤ 0,
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with the constant A2 =
3rq
2 +

16B2
Qt

3n . This implies that

ERn`locQ (rq) ≤
8

n

[√
nA1

2
+ 45(1− e−t)2BQ logNn

Q +

([√nA1

2
+ 45(1− e−t)2BQ logNn

Q

]2
− n

4

[
A2

1 − 9(1− e−t)2A2 logNn
Q

]) 1
2
]

= n−
1
2

[
4A1 +

360√
n

(1− e−t)2BQ logNn
Q +

([
4A1 +

360√
n

(1− e−t)2BQ logNn
Q

]2
− 16

[
A2

1 − 9(1− e−t)2A2 logNn
Q

]) 1
2
]
.

Hence, for each t > 0, by introducing the following constants

C1(n, t) = 216(1− e−t)2σ−2
b L4 logNn

Q, (57)

C2(n, t) =
[
4A1 +

360√
n

(1− e−t)2BQ logNn
Q

]2 − 16A2
1 + t(1− e−t)2

768B2
Q

n
logNn

Q

=

(
1 + 3BQe

−t
√

logNn
Q +

45√
n

(1− e−t)2BQ logNn
Q

)
2880√
n

(1− e−t)2BQ logNn
Q

+ t(1− e−t)2
768B2

Q

n
logNn

Q, (58)

C3(n, t) = 12BQe
−t
√

logNn
Q +

360√
n

(1− e−t)2BQ logNn
Q, (59)

with BQ = sup(θ,x)∈Θ×X ‖Qθ(x)−Q∗(x)‖F ≤ 2
√
dL and Nn

Q = N ( 1√
n
, `Q, L∞), we can deduce that

ERn`locQ (rq) ≤ n−
1
2

[(
C1(n, t)(

√
r +MCvg(k))2 + C2(n, t)

) 1
2

+ C3(n, t) + 4

]
.
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G. Poof of Algorithm properties of RNN
We denote by RNNkφ a recurrent neural network that has k unrolled RNN cells and view it as a neural algorithm. It has been
proposed in [18] to use RNN to learn an optimization algorithm where the update steps in each iteration are given by the
operations in an RNN cell

yk+1 ← RNNcell (Q, b,yk) := V σ
(
WLσ

(
WL−1 · · ·W 2σ

(
W 1

1 yk +W 1
2 gk

)))
. (60)

In the above equation, we take a specific example where the RNNcell is a multi-layer perception (MLP) with activations
σ = RELU that takes the current iterate yk and the gradient gk = Qyk + b as inputs.

(I) Stable Region. First, we show that when the parameters satisfy cφ := supQ ‖V ‖2‖W 1
1 + W 1

2Q‖2
∏L
l=2 ‖W l‖2 < 1,

the operations in RNNcell are strictly contractive, i.e., ‖yk+1 − yk‖2 ≤ cφ‖yk − yk−1‖2.

Proof. By definition,

‖yk+1 − yk‖2 = ‖V σ
(
WLσ

(
WL−1 · · ·W 2σ

(
W 1

1 yk +W 1
2 gk

)))
− V σ

(
WLσ

(
WL−1 · · ·W 2σ

(
W 1

1 yk−1 +W 1
2 gk−1

)))
‖2

≤ ‖V ‖2‖σ
(
WLσ

(
WL−1 · · ·W 2σ

(
W 1

1 yk +W 1
2 gk

)))
− σ

(
WLσ

(
WL−1 · · ·W 2σ

(
W 1

1 yk−1 +W 1
2 gk−1

)))
‖2

Since the activation function σ = RELU satisfies the inequality that ‖σ(x)− σ(x′)‖2 ≤ ‖x− x′‖2 for any x,x′, we have

‖yk+1 − yk‖2 ≤ ‖V ‖2‖WLσ
(
WL−1 · · ·W 2σ

(
W 1

1 yk +W 1
2 gk

))
−WLσ

(
WL−1 · · ·W 2σ

(
W 1

1 yk−1 +W 1
2 gk−1

))
‖2.

Similarly, we can obtain

‖yk+1 − yk‖2
≤ ‖V ‖2‖WL‖2 · · · ‖W 2‖2‖

(
W 1

1 yk +W 1
2 gk

)
−
(
W 1

1 yk−1 +W 1
2 gk−1

)
‖2

= ‖V ‖2‖WL‖2 · · · ‖W 2‖2‖(W 1
1 +QW 1

2 )(yk − yk−1)‖2
≤ ‖V ‖2‖WL‖2 · · · ‖W 2‖2‖W 1

1 +QW 1
2 ‖2‖yk − yk−1‖2

≤ cφ‖yk − yk−1‖2.

Therefore, if cφ < 1, then the operation is strictly contractive.

(II) Stability. We shall show the neural algorithm RNNkφ has a stability constant Stab(k, φ) = O(1− ckφ) (see the definition
of stability in Sec 3).

Proof. Let us consider two quadratic problems induced by (Q, b) and (Q′, b′), and denote the corresponding outputs of
RNNkφ as yk = RNNkφ(Q, b) and y′k = RNNkφ(Q′, b′).

Denote cQφ = ‖V ‖2‖W 1
1 + W 1

2Q‖2
∏L
l=2 ‖W l‖2, cQ

′

φ = ‖V ‖2‖W 1
1 + W 1

2Q
′‖2
∏L
l=2 ‖W l‖2, and ĉφ :=

‖V ‖2‖W 1
2 ‖2

∏L
l=2 ‖W l‖2. First, we see that

‖yk‖2 ≤ cQφ ‖yk−1‖2 + ĉφ‖b‖2 ≤ (cQφ )k‖y0‖2 + ĉφ‖b‖2
k∑
i=1

(cQφ )i−1

=
ĉφ‖b‖2(1− (cQφ )k)

1− cQφ
≤ ĉφ‖b‖2

1− cQφ
.

(61)
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Similar conclusion holds for y′k. Then, by following a similar argument as that for the proof of the stable region, we can
deduce from y0 = y′0 that

‖yk − y′k‖2
≤ ‖V ‖2‖WL‖2 · · · ‖W 2‖2‖(W 1

1 +W 2
1Q)yk−1 − (W 1

1 +W 2
1Q
′)y′k−1 +W 2

1 (b− b′)‖2
≤ ‖V ‖2‖WL‖2 · · · ‖W 2‖2(‖W 1

1 +W 2
1Q‖2‖yk−1 − y′k−1‖2 + ‖Q−Q′‖2‖W 2

1 ‖2‖y′k−1‖2
+ ‖W 2

1 ‖2‖(b− b′)‖2)

≤ cQφ ‖yk−1 − y′k−1‖2 + ĉφ‖Q−Q′‖2
ĉφ‖b′‖2
1− cQ′φ

+ ĉφ‖b− b′‖2

≤ (cQφ )k‖y0 − y′0‖2 +

(
ĉ2φ‖b′‖2
1− cQ′φ

‖Q−Q′‖2 + ĉφ‖b− b′‖2

)
k∑
i=1

(cQφ )i−1

=
ĉ2φ‖b′‖2
1− cQ′φ

1− (cQφ )k

1− cQφ
‖Q−Q′‖2 + ĉφ

1− (cQφ )k

1− cQφ
‖b− b′‖2.

Therefore, the stability constant is of the magnitude O(1− ckφ).

(III) Sensitivity. We now proceed to analyze the sensitivity of the neural algorithm RNNkφ as defined in Sec 3. Note that
the strong non-linearity in the RNN cell and the high-dimensionality of the parameter space significantly complicate the
analysis of the Lipschitz dependence of RNNkφ with respect to its parameter φ = {W 1

1 ,W
1
1 ,W

2, . . . ,WL, V }. To simplify
our presentation, we shall assume the parameter φ are constrained in a compact subset Φ of the stable region, and show
the neural algorithm RNNkφ has a sensitivity Sens(k) = O(1− (infφ∈Φ cφ)k). A rigorous sensitivity analysis of RNN with
general weights is out of the scope of this paper.

Proof. Let the range of parameters Φ is a compact subset of the stable region, such that for all φ ∈ Φ, cφ :=

supQ ‖V ‖2‖W 1
1 + W 1

2Q‖2
∏L
l=2 ‖W l‖2 ≤ c0 < 1 for some constant c0. Let φ, φ′ ∈ Φ be two given sets of param-

eters. For each k ∈ N, we denote yk = RNNkφ(Q, b) and y′k = RNNkφ′(Q, b) the outputs corresponding to the parameters φ
and φ′, respectively. Then we have that

‖yk − y′k‖2 = ‖RNNcellφ(Q, b,yk−1)− RNNcellφ′(Q, b,y
′
k−1)‖2

≤ ‖RNNcellφ(Q, b,y′k−1)− RNNcellφ′(Q, b,y′k−1)‖2
+ ‖RNNcellφ(Q, b,yk−1)− RNNcellφ(Q, b,y′k−1)‖2
≤ ‖RNNcellφ(Q, b,y′k−1)− RNNcellφ′(Q, b,y′k−1)‖2 + cφ‖yk−1 − y′k−1‖2

If there exists a constant K, independent of k, φ, φ′, such that

‖RNNcellφ(Q, b,y′k−1)− RNNcellφ′(Q, b,y′k−1)‖2 ≤ K‖φ− φ′‖2, (62)

then we can obtain from y0 = y′0 that

‖yk − y′k‖2 ≤ v‖φ− φ′‖2 + cφ‖yk−1 − y′k−1‖2

≤ K‖φ− φ′‖2
k∑
i=1

ci−1
φ =

1− ckφ
1− cφ

K‖φ− φ′‖2.

The fact that cφ ≤ c0 < 1 for some constant c0 implies that the magnitude of sensitivity is O(1− (infφ∈Φ cφ)k).

Now it remains to establish the estimate Eq. 62. For each k ∈ N, φ = {W 1
1 ,W

1
1 ,W

2, . . . ,WL, V } and l = 2, · · · , L, we
introduce the notation

f lφ := W lσ
(
W l−1 · · ·W 2σ

(
W 1

1 yk +W 1
2 gk

))
, (63)
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with f1
φ = W 1

1 yk +W 1
2 gk. Then we have for each l = 1, · · · , L that

‖f lφ‖2 ≤
l∏

j=2

‖W j‖2
(
‖W 1

1 +W 1
2Q‖2‖yk‖2 + ‖W 1

2 ‖2‖b‖2
)

= cl‖yk‖2 + ĉl‖b‖2, (64)

with the constants cl :=
(∏l

j=2 ‖W j‖2
)
‖W 1

1 + W 1
2Q‖2, ĉl :=

(∏l
j=2 ‖W j‖2

)
‖W 1

2 ‖2 for all l = 1, . . . , L. Then by
induction, we can see that

‖fLφ − fLφ′‖2 = ‖WLσ(fL−1
φ )−W ′Lσ(fL−1

φ′ )‖2
≤ ‖WL −W ′L‖2‖fL−1

φ′ ‖2 + ‖WL‖2‖fL−1
φ − fL−1

φ′ ‖2

≤ ‖WL −W ′L‖2‖fL−1
φ′ ‖2 + ‖WL‖2

(
‖WL−1 −W ′L−1‖2‖fL−2

φ′ ‖2

+ ‖WL−1‖2‖fL−2
φ − fL−2

φ′ ‖2
)

≤
L∑
l=2

( L∏
j=l+1

‖W j‖2
)
‖W l −W ′l‖2‖f l−1

φ′ ‖2 +

( L∏
l=2

‖W l‖2
)
‖f1
φ − f1

φ′‖2.

Thus we have that

‖RNNcellφ(Q, b,yk)− RNNcellφ′(Q, b,yk)‖2 = ‖V σ(fLφ )− V ′σ(fLφ′)‖2
≤ ‖V − V ′‖2‖fLφ′‖2 + ‖V ‖2‖fLφ − fLφ′‖2

≤ ‖V − V ′‖2‖fLφ′‖2 + ‖V ‖2
[ L∑
l=2

( L∏
j=l+1

‖W j‖2
)
‖W l −W ′l‖2‖f l−1

φ′ ‖2

+

( L∏
l=2

‖W l‖2
)
‖f1
φ − f1

φ′‖2
]
.

Furthermore, we see that

‖f1
φ − f1

φ′‖2 = ‖(W 1
1 +W 1

2Q)yk +W 1
2 b− (W ′11 +W ′12 Q)yk +W ′12 b‖2

≤ ‖W 1
1 −W ′11 + (W 1

2 −W ′12 )Q‖2‖yk‖2 + ‖W 1
2 −W ′12 ‖2‖b‖2

≤ ‖W 1
1 −W ′11 ‖‖yk‖2 + ‖W 1

2 −W ′12 ‖(‖Q‖2‖yk‖2 + ‖b‖2),

from which we can conclude that

‖RNNcellφ(Q, b,yk)− RNNcellφ′(Q, b,yk)‖2

≤ ‖fLφ′‖2‖V − V ′‖2 +

L∑
l=2

[
‖V ‖2

( L∏
j=l+1

‖W j‖2
)
‖f l−1
φ′ ‖2

]
‖W l −W ′l‖2

+ ‖V ‖2
( L∏
l=2

‖W l‖2
)[
‖W 1

1 −W ′11 ‖‖yk‖2 + ‖W 1
2 −W ′12 ‖(‖Q‖2‖yk‖2 + ‖b‖2)

]
.

Note that we have assumed that the set of parameters Φ is a compact subset of the stable region and (Q, b) ∈ Sd×dµ,L × B are
bounded, which imply that for all φ, φ′ ∈ Φ, the corresponding outputs (yk)k∈N and (y′k)k∈N are uniformly bound, and
hence ‖f lφ′‖2 is bounded for all k and l = 1, . . . , L (see Eq. 64). Consequently, we see there exists a constant K such that
Eq. 62 is satisfied. This finishes the proof of the desired sensitivity result.

(IV) Convergence. For the convergence of RNNkφ, we can only give the best case guarantee. It is easy to see that with the
following choice of φ, RNNkφ can represent GDks :

V = [I,−I], W 1
1 = [I;−I]>, W 2

1 = [−sI; sI]>, W l = I for l = 2, · · · , L. (65)

Therefore, for the best case, RNNkφ can converge at least as fast as GDks .
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H. Experiment Details
Here we state the configuration details of the experiments.

• Convexity and smoothness. They are set to be µ = 0.1 and L = 1, respectively.

• Dataset. 10000 pairs of (x, b) are generated in the following way: 10000 many x are uniformly sampled from
[−5, 5]10 × U5×5, where U5×5 denotes the space of all 5 × 5 unitary matrices. Each input x actually is a tuple
x = (zx, Ux) where zx ∈ [−5, 5]10 and Ux is unitary. 10000 many b are uniformly sampled from [−5, 5]5. These
10000 pairs are viewed as the whole dataset.

• Training set Sn. During training, n samples are randomly drawn from these 10000 data points as the training set. The
labels of these training samples are given by y = Opt(Q∗(x), b).

• More details on Q∗(x). As mentioned before, each x is a tuple x = (zx, Ux). Then we implement Q∗(x) =
Uxdiag([g∗(zx), µ, L])U>x , where g∗ is a 2-layer dense neural network with hidden dimension 3, output dimension
3, and with randomly fixed parameters. Note that in the final layer of g∗, there is a sigmoid-activation that scales the
output to the range [0, 1] and then the range is further re-scaled to [µ,L]. Finally, g∗(zx) is concatenated with [µ,L]
to form a 5-dimensional vector with smallest and largest value to be µ and L respectively. This vector represents the
eigenvalues of Q∗(x).

• Architecture of Qθ. Qθ has the same form as Q∗(x), except that the network g∗ in Q∗ becomes gθ in Qθ. That is,
Qθ(x) = Uxdiag([gθ(zx), µ, L])U>x . Here gθ is also a 2-layer dense neural network with output dimension 3, but
the hidden dimension can vary. In the reported results, when we say hidden dimension=0, it means gθ is a one-layer
network.

For the experiments that compare RNNkφ with GDkφ and NAGkφ, they are conducted under the ‘learning to learn’ scenario, with
the following modifications compared to the above setting.

• Dataset. Instead of sampling (x, b), here we directly sample the problem pairs (Q, b). Similarly, 10000 pairs of (Q, b)
are sampled uniformly from S10×10

µ,L × [−5, 5]10.

• Architecture of RNNkφ. For each cell in RNNkφ, it is a 4-layer dense neural network with hidden dimension 20-20-20.

For all experiments, each model has been trained by both ADAM and SGD with learning rate searched over [1e-2,5e-3,1e-
3,5e-4,1e-4], and only the best result is reported. Furthermore, error bars are produced by 20 independent instantiations of
the experiments. The experiments are mainly run parallelly (since we need to search the best learning rate) on clusters which
have 416 nodes where on each node there are 24 Xeon 6226 CPU @ 2.70GHz with 192 GB RAM and 1x512 GB SSD.


