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Abstract
This paper studies learning logic rules for reason-
ing on knowledge graphs. Logic rules provide in-
terpretable explanations when used for prediction
as well as being able to generalize to other tasks,
and hence are critical to learn. Existing methods
either suffer from the problem of searching in
a large search space (e.g., neural logic program-
ming) or ineffective optimization due to sparse
rewards (e.g., techniques based on reinforcement
learning). To address these limitations, in this pa-
per we propose a principled probabilistic model
called RNNLogic. RNNLogic treats logic rules
as latent variables, and simultaneously trains a
rule generator as well as a reasoning predictor
with logic rules. Specifically, an EM algorithm
is developed for optimization. In the E-step, a
set of high-quality rules are selected by the rule
generator and reasoning predictor via posterior
inference, which help reduce the search space sig-
nificantly; in the M-step, both the rule generator
and reasoning predictor are updated with the se-
lected high-quality rules in the E-step. Extensive
experiments on four benchmark datasets prove
the effectiveness of RNNLogic.

1. Introduction
Knowledge graphs are collections of real-world facts, which
are useful in various applications. Each fact is typically
specified as a triplet (h,r, t) or equivalently r(h, t), mean-
ing entity h has relation r with entity t. For example, Bill
Gates is the Co-founder of Microsoft. As it is impossi-
ble to collect all facts, knowledge graphs are incomplete.
Therefore, a fundamental problem on knowledge graphs is
to predict missing facts by reasoning with existing ones,
a.k.a. knowledge graph reasoning.

This paper focuses on learning logic rules for reasoning
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on knowledge graphs. For example, one may extract
a rule ∀X,Y, Z hobby(X,Y ) ← friend(X,Z) ∧
hobby(Z, Y ), meaning that if Z is a friend of X and Z
has hobby Y , then Y is also likely the hobby of X . Af-
terwards, the rule can be applied to infer new hobbies of
different people. Such logic rules are able to improve inter-
pretability as well as precision of the reasoning process (Qu
& Tang, 2019; Zhang et al., 2020). Moreover, logic rules
can also be reused and generalized to other domains and
datasets (Teru & Hamilton, 2020). However, due to the large
search space of logic rules, inferring high-quality logic rules
for reasoning on knowledge graphs is a challenging task.

Indeed, a variety of methods have been proposed for learn-
ing logic rules from knowledge graphs. For example, the
path ranking algorithm (Lao & Cohen, 2010; Lao et al.,
2011) enumerates relational paths between entities as candi-
date logic rules, and further learns a weight for each rule as
an assessment of rule qualities. There are also some recent
methods based on neural logic programming (Sadeghian
et al., 2019; Yang et al., 2017; Yang & Song, 2020), which
are able to learn logic rules and their weights at the same
time in a differentiable way. Though empirically effective
for prediction, the search space of these methods is exponen-
tially large, making it difficult to identify high-quality logic
rules. On the other hand, some recent efforts (Das et al.,
2018; Lin et al., 2018; Shen et al., 2018; Xiong et al., 2017)
formulate the problem as a sequential decision making pro-
cess, and use reinforcement learning to search for logic rules
on knowledge graphs, which significantly reduces search
complexity. However, due to the large action space and
sparse reward in training, the performance of these methods
is not yet satisfying.

In this paper, we propose a principled probabilistic approach
called RNNLogic which overcomes the above limitations.
Our approach consists of a rule generator as well as a rea-
soning predictor with logic rules, which are simultaneously
trained to enhance each other. The rule generator provides
high-quality logic rules that are used for training the rea-
soning predictor, while the reasoning predictor provides
effective reward to train the rule generator, which helps sig-
nificantly reduce the search space. Specifically, for each
query-answer pair, e.g., q = (h, r, ?) and a = t, we model
the probability of the answer conditioned on the query and
existing knowledge graph G, i.e., p(a|G,q), where a set of
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logic rules z is treated as a latent variable. The rule generator
defines a prior distribution over logic rules for each query,
i.e., p(z|q), which is parameterized by a recurrent neural
network (Hochreiter & Schmidhuber, 1997). The reasoning
predictor computes the likelihood of the answer conditioned
on the logic rules and the existing knowledge graph G, i.e.,
p(a|G,q, z). We develop an EM algorithm (Koller & Fried-
man, 2009; Neal & Hinton, 1998) for training. In the E-step,
a set of high-quality logic rules are selected according to
the posterior distribution. In the M-step, the rule genera-
tor is updated to imitate the high-quality rules selected in
the E-step, and the reasoning predictor is updated with the
selected logic rules. Experimental results on four knowl-
edge graph benchmarks show that RNNLogic outperforms
existing state-of-the-art methods for reasoning on knowl-
edge graphs. Besides, RNNLogic is also able to generate
high-quality logic rules.

2. Model
In this section, we introduce the proposed approach RNN-
Logic which learns logic rules for knowledge graph reason-
ing. We first formally define knowledge graph reasoning
and logic rules.

Knowledge Graph Reasoning. Let pdata(G,q,a) denote
the training data distribution, where G is an existing knowl-
edge graph characterized by a set of (h,r, t)-triplets, which
we may also write as r(h, t), q = (h,r, ?) is a query, and
a = t is a target answer. Given G and the query q, the goal
is to predict the correct answer a. More formally, we aim to
model the probabilistic distribution p(a|G,q).

Logic Rule. We perform knowledge graph reasoning by
learning logic rules, where logic rules in this paper have the
conjunctive form ∀{Xi}li=0 r(X0, Xl) ← r1(X0, X1) ∧
· · ·∧rl(Xl−1, Xl) with l being the rule length. This syntac-
tic structure naturally captures composition, and can easily
express other common logic rules such as symmetric or in-
verse rules. For example, let r−1 denote the inverse relation
of relation r, then each symmetric rule can be expressed as
∀{X,Y } r(X,Y )← r−1(X,Y ).

In RNNLogic, we treat a set of logic rules which could
explain a query as a latent variable we have to infer. To do
this, we introduce a rule generator and a reasoning predictor
using logic rules. Given a query, the rule generator employs
a recurrent neural network to generate a set of logic rules,
which are given to the reasoning predictor for prediction.
We optimize RNNLogic with an EM algorithm. In the E-
step, a few important logic rules are identified via posterior
inference, with the prior defined by the rule generator and
likelihood specified by the reasoning predictor. In the M-
step, the rule generator and the reasoning predictor are both
updated with the high-quality rules selected in the E-step.

2.1. Probabilistic Formalization

We start by formalizing knowledge graph reasoning in a
probabilistic way, where a set of logic rules z is treated as a
latent variable. The target distribution p(a|G,q) is jointly
modeled by a rule generator and a reasoning predictor. The
rule generator pθ defines a prior over a set of latent rules z
conditioned on a query q, while the reasoning predictor pw
gives the likelihood of the answer a conditioned on latent
rules z, the query q, and the knowledge graph G. Then
p(a|G,q) can be naturally computed as:

pw,θ(a|G,q) =
∑
z

pw(a|G,q, z)pθ(z|q). (1)

The goal is to jointly train the rule generator and reason-
ing predictor to maximize the likelihood of training data.
Formally, the objective function is presented as below:

max
θ,w
O(θ, w) = E(G,q,a)∼pdata [log pw,θ(a|G,q)]. (2)

2.2. Parameterization

Rule Generator. The rule generator defines the distribution
pθ(z|q). For a query q, the rule generator aims at generating
a set of latent logic rules z for answering the query.

To make the rules more general, given a query q = (h,r, ?),
we generate the set of compositional logic rules by only
considering the query relation r without the query entity
h. For each compositional rule in the abbreviation form
r ← r1 ∧ · · · ∧ rl, it can naturally be viewed a sequence
of different relations [r,r1,r2 · · ·rl,rEND], where r is the
query relation or the head of the rule, {ri}li=1 are the body
of the rule, and rEND is a special relation indicating the end
of the relation sequence.

Such relation sequences can be effectively modeled by re-
current neural networks (Hochreiter & Schmidhuber, 1997),
and hence we introduce RNNθ to parameterize the rule gen-
erator. Given a query relation r, RNNθ will sequentially
generate each relation in the body of a rule, until it reaches
the ending relation rEND. In this process, the probability
of the generated rule can be naturally computed. Based on
such probabilities of rules, we can further define the distri-
bution over a set of rules z with the following multinomial
distribution:

pθ(z|q) = Mu(z|N,RNNθ(·|r)), (3)

where Mu stands for multinomial distributions, N is a hy-
perparameter for the size of the rule set z, and RNNθ(·|r)
defines the probability distributions over all the composi-
tional rules with rule head being r. The generative process
of a rule set z is quite intuitive. Basically, we sample from
the distribution over rules defined by RNNθ(·|r) for N
times, and use these N rules to form the set z.
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Reasoning Predictor with Logic Rules. The reasoning
predictor defines pw(a|G,q, z). Basically, given a query q,
existing graph G, and rule set z, the reasoning predictor tries
to predict the answer a.

Following the idea in stochastic logic program-
ming (Cussens, 2000), we employ a log-linear model for
reasoning. Basically, for a query q = (h,r, ?), each logic
rule for relation r can find different grounding paths in the
knowledge graph, leading to different candidate answers.

Let A denote the set of all the candidate answers which
are discovered by logic rules in set z. For each candidate
answer e ∈ A, we define the following function scorew
to compute a score:

scorew(e) =
∑

rule∈z

scorew(e|rule)

=
∑

rule∈z

∑
path∈P(h,rule,e)

uw(rule) · vw(path),
(4)

where P(h, rule, e) is the set of grounding paths which
start at h and end at e following a rule (e.g., Alice friend−−−−→
Bob hobby−−−−→ Sing). uw(rule) and vw(path) are scalar
weights of each rule and path.

For the scalar weight uw(rule) of rule, we parameterize it
with a lookup table over the logic rules generated by the
rule generator. For the score vw(path) of each specific path,
we explore two methods for parameterization. One method
always sets vw(path) = 1, and the other one follows the
idea in an embedding-based approach RotatE (Sun et al.,
2019). Specifically, we introduce an embedding for each
entity, and each relation is modeled as a rotation operator
on entity embeddings. For each grounding path of rule
starting from h to e, we apply the rotation operator defined
by each body relation of rule to the embedding of h, and
compute the similarity between the derived embedding and
the embedding of e as vw(path). For example, given a path
Alice friend−−−−→ Bob hobby−−−−→ Sing, we rotate Alice’s embed-
ding with the operators defined by friend and hobby.
Then we compute the similarity between the new embed-
ding and embedding of Sing as vw(path). See App. B for
the details of the parameterization.

Once we have the score for each candidate answer, we can
further define the distribution over candidate answers by
using a softmax function as follows:

pw(a = e|G,q, z) = exp(scorew(e))∑
e′∈A exp(scorew(e′))

. (5)

2.3. Optimization

Next, we explain how we optimize the reasoning predictor
and rule generator with logic rules to maximize the objective

in Eq. (2). Specifically, an EM framework is developed for
optimizing the parameters, alternating between an E-step
and an M-step. In the E-step, the rule generator generates
multiple logic rules, from which a few most important ones
are identified via posterior inference, with prior from the
rule generator and likelihood from the reasoning predictor.
In the M-step, the rule generator and reasoning predictor are
updated to be consistent with the important rules selected in
the E-step.

E-step. The general goal of the E-step is to identify the
most important rules from the generator.

Formally, for each data instance (G,q,a), we start with
sampling a set of logic rules ẑ from the rule generator, i.e.,
ẑ ∼ pθ(z|q). Then we try to infer a set of most important
rules z∗ from all the logic rules ẑ generated by the rule
generator, i.e., z∗ ⊂ ẑ. This can be achieved by posterior
inference, where we look into the posterior distribution of
z∗, i.e., pθ,w(z∗|G,q,a) ∝ pw(a|G,q, z∗)pθ(z∗|q), with
the prior of z∗ defined by the rule generator pθ and likeli-
hood for z∗ coming from the reasoning predictor pw. The
posterior distribution combines knowledge from both the
rule generator and the reasoning predictor, and hence the
likely subset of important rules z∗ can be naturally obtained
by sampling from the posterior. However, exact inference is
intractable, so we use an approximation algorithm, and the
workflow is summarized as follows:

1. For each rule ∈ ẑ, compute the following H score:

H(rule) = scorew(t|rule)− 1

|A|
∑
e∈A

scorew(e|rule)

+ logRNNθ(rule|r),
(6)

2. Form a sample ẑ∗ with K logic rules independently sam-
pled from ẑ, where the probability of sampling each rule
is computed as exp(H(rule))/

∑
rule′∈ẑ exp(H(rule′)).

We prove it in the appendix.

M-step. Once we obtain a set of important rules ẑ∗ for each
data instance (G,q,a) in the E-step, we further leverage
those rules to update the rule generator and the reasoning
predictor in the M-step.

Specifically, for each data instance (G,q,a), we treat the
corresponding rule set ẑ∗ as part of the (now complete)
training data, and update the rule generator by maximizing
the log-likelihood of ẑ∗:

max
θ

log pθ(ẑ∗|q) =
∑

rule∈ẑ∗

log pθ(rule|q) + const

=
∑

rule∈ẑ∗

logRNNθ(rule|r) + const.

(7)
With the above objective, the knowledge from the reasoning
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Table 1. Results of reasoning on FB15k-237 and WN18RR. H@K is in %. [∗] means the numbers are taken from original papers. [†]
means we rerun the methods with the same evaluation process.

Category Algorithm FB15k-237 WN18RR
MR MRR H@1 H@3 H@10 MR MRR H@1 H@3 H@10

No Rule
Learning

TransE∗ 357 0.294 - - 46.5 3384 0.226 - - 50.1
DistMult∗ 254 0.241 15.5 26.3 41.9 5110 0.43 39 44 49
ComplEx∗ 339 0.247 15.8 27.5 42.8 5261 0.44 41 46 51

ConvE∗ 244 0.325 23.7 35.6 50.1 4187 0.43 40 44 52
RotatE∗ 177 0.338 24.1 37.5 53.3 3340 0.476 42.8 49.2 57.1

Rule
Learning

PathRank - 0.087 7.4 9.2 11.2 - 0.189 17.1 20.0 22.5
NeuralLP† - 0.237 17.3 25.9 36.1 - 0.381 36.8 38.6 40.8
DRUM† - 0.238 17.4 26.1 36.4 - 0.382 36.9 38.8 41.0
NLIL∗ - 0.25 - - 32.4 - - - - -

MINERVA∗ - 0.293 21.7 32.9 45.6 - 0.415 38.2 43.3 48.0
M-Walk∗ - 0.232 16.5 24.3 - - 0.437 41.4 44.5 -

RNNLogic w/o emb. 538 0.288 20.8 31.5 44.5 7527 0.455 41.4 47.5 53.1
with emb. 232 0.344 25.2 38.0 53.0 4615 0.483 44.6 49.7 55.8

predictor can be effectively distilled into the rule genera-
tor. In this way, the rule generator can be more effectively
optimized, which allows the generator to focus only on im-
portant logic rules for exploitation, and thereby reduce the
search space.

For the reasoning predictor pw, ideally we should feed ẑ∗
into pw and update pw to maximize the log-likelihood of the
correct answer, i.e., pw(a|G,q, ẑ∗). However, this can lead
to a mismatch between distributions of logic rules uesd in
training and testing. Specifically, during training the logic
rules are from the posterior inference in E-step, whereas
during testing logic rules come from the rule generator pθ.
This distribution mismatch can downgrade the reasoning
performance after training. To solve the problem, we notice
that after updating the rule generator pθ with the selected
rules ẑ∗, the rule generator will assign most of the probabil-
ity mass to rules in ẑ∗. Therefore, we could naturally use
rules sampled from the generator pθ to update the reason-
ing predictor, allowing us to generate consistent logic rules
during training and testing. Formally, the objective for pw
is given as follows:

max
w

Epθ(z|q)[log pw(a|G,q, z)] ' log pw(a|G,q, ẑ) (8)

where ẑ is a set of logic rules drawn from the rule generator
pθ, i.e., ẑ ∼ pθ(z|q).

3. Experiment
3.1. Compared Algorithms

For rule learning methods, we consider path ranking (Lao &
Cohen, 2010), which linearly combines candidate rules for
reasoning. We also consider NeuralLP (Yang et al., 2017),
DRUM (Sadeghian et al., 2019) and NLIL (Yang & Song,
2020), which develop differentiable methods following a
logic framework called TensorLog (Cohen et al., 2018). Be-
sides, two methods based on reinforcement learning are

compared, including MINERVA (Das et al., 2018) and M-
Walk (Shen et al., 2018). We also compare against many
state-of-the-art knowledge graph embedding methods, in-
cluding TransE (Bordes et al., 2013), DistMult (Yang et al.,
2015), ComplEx (Trouillon et al., 2016), ConvE (Dettmers
et al., 2018) and RotatE (Sun et al., 2019). For our proposed
RNNLogic, we consider two variants. One variant always
assigns a constant score to different grounding paths in the
reasoning predictor. In other words, vw(path) in Eq. (4)
is fixed as 1, and we denote this variant as w/o emb.. The
other variant introduces entity and relation embeddings to
compute vw(path), and we denote the variant as with emb..

3.2. Results

We present the results in Tab. 1.

We first compare RNNLogic with existing rule learning
methods. For methods based on neural logic programming
(NeuralLP, DRUM, NLIL), RNNLogic significantly outper-
forms them on all the datasets. The reason is that RNNLogic
employs the rule generator to reduce search space, allowing
the reasoning predictor to focus only on the most informa-
tive logic rules. RNNLogic also achieves better results than
reinforcement learning methods (MINERVA, M-Walk) in
most cases. The reason is that RNNLogic is optimized with
the EM framework, in which the reasoning predictor is able
to provide more useful feedback to the rule generator, and
thus overcome the challenge of sparse reward.

We then compare RNNLogic against state-of-the-art
embedding-based methods. For RNNLogic with embed-
dings in the reasoning predictor (with emb.), it outperforms
most compared methods in most cases, and the reason is
that RNNLogic is able to use logic rules to enhance rea-
soning performance. For RNNLogic without embedding
(w/o emb.), it achieves comparable results to embedding-
based methods, especially on WN18RR, Kinship and UMLS
where the training triplets are sparse.
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A. Analysis of E-step
Recall that in the E-step of the optimization algorithm, we aim to sample from the posterior distribution over rule set.
However, directly sampling from the posterior distribution is intractable due to the complicated form of the posterior
distribution. Therefore, we introduce an approximation algorithm. In this section, we present some theoretical analysis
of the approximation algorithm. More specifically, in Section A.1, we present and prove a proposition, which tries to
approximate the true posterior distribution with a simpler form. In Section A.2, we show how to perform sampling based on
the approximation of the posterior distribution.

A.1. Approximation of the Posterior Distribution

Proposition Consider a data instance (G,q,a) with q = (h, r, ?) and a = t. For a set of rules ẑ generated by the rule
generator pθ, we can compute the following score H for each rule

H(rule) =

{
scorew(t|rule)− 1

|A|
∑
e∈A

scorew(e|rule)

}
+ logRNNθ(rule|r),

where A is the set of all candidate answers discovered by rules in ẑ, scorew(e|rule) is the score that each rule contributes
to entity e as defined in Section 3, RNNθ(rule|r) is the prior probability of rule computed by the rule generator. Suppose
s = maxe∈A |scorew(e)| < 1. Then for a subset of rules z∗ ⊂ ẑ with |z∗| = K, the log-probability log pθ,w(z∗|G,q,a)
could be approximated as follows:∣∣∣∣∣log pθ,w(z∗|G,q,a)−

( ∑
rule∈z∗

H(rule) +G(z∗) + const

)∣∣∣∣∣ ≤ s2 +O(s4)

where const is a constant term that is independent from z∗, G(z∗) = log(K!/
∏

rule∈ẑ nrule!), with K being the given size of
set z∗ and nrule being the number of times each rule appears in z∗.

Proof: We first rewrite the posterior probability as follows:

log pθ,w(z∗|g,q,a) = log pw(a|g,q, z∗) + log pθ(z∗|q) + const

= log
exp(scorew(t))∑
e∈A exp(scorew(e))

+ logMu(z∗|K,RNNθ(·|r)) + const,

where const is a constant term which does not depend on the choice of z∗, and RNNθ(·|r) defines a probability dis-
tribution over all the composition-based logic rules. The probability mass function of the multinomial distribution
Mu(z∗|K,RNNθ(·|r)) can then be written as below:

Mu(z∗|K,q) =
K!∏

rule∈ẑ nrule!

∏
rule∈ẑ

RNNθ(rule|r)nrule ,

where nrule is the number of times a rule appears in z∗. Based on that, the posterior probability can then be rewritten as
follows:

log pθ,w(z∗|g,q,a)

= log
exp(scorew(t))∑
e∈A exp(scorew(e))

+ log
K!∏

rule∈ẑ nrule!
+ log

∏
rule∈ẑ

RNNθ(rule|r)nrule + const

= log
exp(scorew(t))∑
e∈A exp(scorew(e))

+G(z∗) +
∑

rule∈z∗

logRNNθ(rule|r) + const

=scorew(t)− log
∑
e∈A

exp(scorew(e)) +G(z∗) +
∑

rule∈z∗

logRNNθ(rule|r) + const

where G(z∗) = log(K!/
∏

rule∈ẑ nrule!), with K being the given size of set z∗ and nrule being the number of times each rule
appears in z∗.

The term log
∑
e∈A exp(scorew(e)) in the posterior probability is computationally too expensive, thus we approximate it

using Lemma 1, which we prove at the end of this section.
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Lemma 1. Let e ∈ A be a finite set of entities, let |scorew(e)| ≤ s < 1, and let scorew be a function from entities to
real numbers. Then the following inequalities hold:

0 ≤ log

(∑
e∈A

exp(scorew(e))

)
−

(∑
e∈A

1

|A|
scorew(e) + log(|A|)

)
≤ s2 +O(s4).

Hence, using the lemma we can get the following upper bound of the posterior probability:

log pθ,w(z∗|g,q,a)

=scorew(t)− log
∑
e∈A

exp(scorew(e)) +G(z∗) +
∑

rule∈z∗

logRNNθ(rule|r) + const

≤scorew(t)−
∑
e∈A

1

|A|
scorew(e) +G(z∗) +

∑
rule∈z∗

logRNNθ(rule|r) + const

=
∑

rule∈z∗

H(rule) +G(z∗) + const,

and also the following lower bound of the posterior probability:

log pθ,w(z∗|g,q,a)

=scorew(t)− log
∑
e∈A

exp(scorew(e)) +G(z∗) +
∑

rule∈z∗

logRNNθ(rule|r) + const

≥scorew(t)−
∑
e∈A

1

|A|
scorew(e) +G(z∗) +

∑
rule∈z∗

logRNNθ(rule|r) + const− s2 −O(s4)

=
∑

rule∈z∗

H(rule) +G(z∗) + const− s2 −O(s4),

where const is a constant term which does not depend on z∗.

By combining the lower and the upper bound, we get:∣∣∣∣∣log pθ,w(z∗|G,q,a)−
( ∑

rule∈z∗

H(rule) +G(z∗) + const

)∣∣∣∣∣ ≤ s2 +O(s4)

Thus, it only remains to prove Lemma 1 to complete the proof. We use Theorem A.1 from (Simic, 2008) as a starting point:

Theorem A.1. Suppose that x̃ = {xi}ni=1 represents a finite sequence of real numbers belonging to a fixed closed interval
I = [a, b], a < b. If f is a convex function on I , then we have that:

1

n

n∑
i=1

f(xi)− f

(
1

n

n∑
i=1

xi

)
≤ f(a) + f(b)− 2f

(
a+ b

2

)
.

As (− log) is a convex function and exp(scorew(e)) ∈ [exp(−s), exp(s)], Theorem A.1 gives us that:

− 1

|A|
∑
e∈A

log (exp(scorew(e))) + log

(
1

|A|
∑
e∈A

exp(scorew(e))

)

≤ − log(exp(−s))− log(exp(s)) + 2 log

(
exp(−s) + exp(s)

2

)
.
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After some simplification, we get:

log

(∑
e∈A

exp(scorew(e))

)

≤
∑
e∈A

1

|A|
scorew(e) + log(|A|) + 2 log

(
exp(−s) + exp(s)

2

)
=
∑
e∈A

1

|A|
scorew(e) + log(|A|) + 2s− 2 log 2 + 2 log(1 + exp(−2s))

≤
∑
e∈A

1

|A|
scorew(e) + log(|A|) + s2 +O(s4),

(9)

where the last inequality is based on Taylor’s series log(1 + ex) = log 2 + 1
2x+ 1

8x
2 +O(x4) with |x| < 1. On the other

hand, according to the well-known Jensen’s inequality, we have:

log

(
1

|A|
∑
e∈A

exp(scorew(e))

)
≥ 1

|A|
∑
e∈A

log (exp(scorew(e))) ,

which implies:

log

(∑
e∈A

exp(scorew(e))

)
≥
∑
e∈A

1

|A|
scorew(e) + log(|A|). (10)

By combining Equation (9) and Equation (10), we obtain:

0 ≤ log

(∑
e∈A

exp(scorew(e))

)
−

(∑
e∈A

1

|A|
scorew(e) + log(|A|)

)
≤ s2 +O(s4).

This completes the proof.
�.

A.2. Sampling Based on the Approximation of the True Posterior

Based on the above proposition, the log-posterior probability log pθ,w(z∗|G,q,a) could be approximated by
(
∑

rule∈z∗ H(rule) + G(z∗) + const), with const being a term that does not depend on z∗. This implies that we could
construct a distribution p̂(z∗) ∝ exp(

∑
rule∈z∗ H(rule) +G(z∗)) to approximate the true posterior, and draw samples from

p̂ as approximation to the real samples from the posterior.

It turns out that the distribution p̂(z∗) is a multinomial distribution. To see that, we rewrite p̂(z∗) as:

p̂(z∗) =
1

Z
exp

( ∑
rule∈z∗

H(rule) +G(z∗)

)

=
1

Z
exp (G(z∗))

∏
rule∈z∗

exp (H(rule))

=
1

Z

K!∏
rule∈ẑ nrule!

∏
rule∈ẑ

exp (H(rule))nrule

=
1

Z ′
K!∏

rule∈ẑ nrule!

∏
rule∈ẑ

q(rule)nrule

=
1

Z ′
Mu(z∗|K, q),

where nrule is the number of times a rule appears in the set z∗, q is a distribution over all the generated logic rules ẑ with
q(rule) = exp(H(rule))/

∑
rule′∈ẑ exp(H(rule′)), Z and Z ′ are normalization terms. By summing over z∗ on both sides

of the above equation, we obtain Z ′ = 1, and thus we have:

p̂(z∗) = Mu(z∗|K, q).
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To sample from such a multinomial distribution, we could simply sample K rules independently from the distribution q, and
form a sample ẑ∗ with these K rules.

In practice, we observe that the hard-assignment EM algorithm (Koller & Pfeffer, 1998) works better than standard EM
algorithm despite the reduced theoretical guarantees. In the hard-assignment EM algorithm, we need to draw a sample
ẑ∗ with the maximum posterior probability. Based on the above approximation p̂(z∗) of the true posterior distribution
pθ,w(z∗|G,q,a), we could simply construct such a sample ẑ∗ with K rules which have the maximum probability under
the distribution q. By definition, we have q(rule) ∝ exp(H(rule)), and hence drawing K rules with maximum probability
under q is equivalent to choosing K rules with the maximum H values.


