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Abstract

The identification of objects in an image, together
with their mutual relationships as a scene graph,
can lead to a deep understanding of image content.
Despite the recent advancement in deep learning,
the detection and labeling of visual object relation-
ships remain a challenging task. In this work, a
novel local-context aware relation transformer ar-
chitecture has been proposed which also exploits
complex global object to object and object to edge
interactions. Our hierarchical multi-head atten-
tion based approach efficiently captures depen-
dencies between objects and predicts contextual
relationships. In comparison to state-of-the-art
approaches, we have achieved an overall mean
4.85% improvement and new benchmark across
all the scene graph generation tasks on the Visual
Genome dataset.

1. Introduction
A scene graph is a graphical representation of an image con-
sisting of multiple entities and their relationships expressed
in triple format like 〈subject, predicate, object〉. Objects
in the scene become nodes in the graph, and a directed
edge denotes a mutual relationship or predicate. E.g.: In
Fig. 1, ‘Eye’,‘Hair’,‘Head’,‘Man’ are objects or nodes and
their mutual relationships are described by the predicates
‘has’,‘on’.

Automated scene graph generation is executed in two steps:
first, the objects present in the image are detected, and, sec-
ond, likely predicates are derived. Current state-of-the-art
object detection approaches have achieved very good per-
formance in spatially locating objects in an image, while
those for relation prediction are still in a nascent stage. To
achieve state-of-the-art performance, it is important to con-
sider context information (which could be both local or
global context) and utilize this information to model depen-
dencies between objects and predicates. An extracted scene
graph can be used in many applications like visual question
answering(Ghosh et al., 2019), image retrieval(Schuster
et al., 2015), image captioning(Li et al., 2017).

The primary challenge involved in scene graph generation is
to understand the role of each object in an image, and how
objects are related and influenced by others in the context
of the whole image. For example, in Fig. 1, the presence
of nodes like ‘Eye ’, ‘Hair’, ‘Nose’, ‘Head’, indicate that
these together describe a face. Additionally, node ‘Shirt’
implies that this is a face of a ‘Human’and not an animal.
Node dependencies are also important for predicting an
edge or a pairwise relation. Conversely, spatial and seman-
tic co-occurrence also helps in identifying node classes. A
subsequent challenge is to predict correct predicates describ-
ing the exact relationship between two objects.

In this paper, we propose a novel scene graph generation
architecture Relation Transformer, which leverages upon
interactions among objects, predicates, their respective in-
fluence on each other as well as their co-occurrence patterns.
Based on the above mentioned challenges, we have modi-
fied the Transformer architecture with some novel changes.
To summarize our contributions:

• We have introduced a novel positional encoding algo-
rithm for edges in the Transformer decoder that accu-
mulates global scene context while preserving local
context. This is specifically useful since an edge label
can often be predicted from head or tail entity class.

• An algorithm that predicts an edge label needs to be
aware of all node labels of other entities present in the
scene as well as about other edge labels. To achieve
this, we have applied an unrestricted attention and cus-
tom ordering of the E2N and E2E0 blocks.

• We have achieved an overall mean 4.85% improvement
over all scene graph generation tasks and set a new
benchmark on the Visual Genome dataset.

2. Method
The scene graph generation task has been framed as a multi-
hop attention based context propagation problem between

0According to the context in paper, we named encode-encoder
to N2N(Node to Node), decoder-encoder to E2N(Edge to Node)
and decoder-decoder to E2E(Edge to Edge) attention.
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Scene Graph generation using Relation Transformer

(a) Scene consisting of a man’s face

(b) Corresponding scene graph

Figure 1. 1a is an example image of a face of a man. 1b
describes the corresponding scene graph, annotated with
various objects like head, ear, shirt (color coded as the re-
spective bounding box) and their mutual relationships.

nodes and edges. This task is decomposed into four sub-
tasks, starting with object detection, followed by modeling
interactions between the nodes, then accumulating influence
from both nodes and edges, and, finally, classifying rela-
tions between the objects. In the next sub-sections, we will
describe these sub-tasks, along with a brief introduction of
the attention mechanism, the Transformer, and their roles
in these modules. An overview of the proposed Relation
Transformer architecture is shown in Fig. 2.

2.1. Problem Decomposition

A scene graph G = (N,E) of an image I is used for de-
scribing each node or object (ni ∈ N ) and their interlinked
relations (like geometric, spatial etc.) with a directed edge
(eij ∈ E). A set of nodes {ni}, can be represented by
their corresponding bounding boxes as B = {b1, b2, ..bn},
bi ∈ R4 and their class label O = {o1, o2..on}, oi ∈ C. Each
relation rsub→obj ∈ R defines the relationship between the
subject and object node. Hence, scene graph generation can
be formulated as a three factor model as,

Pr(G|I) = Pr(B|I) Pr(O|B, I) Pr(R|O,B, I). (1)

Pr(B|I) can be inferred by any object detection model (Sec.
2.2). Sec.2.3.2 describes conditional probability of an object
class Pr(O|B, I), where the presence of one object can be

influenced by another class. To model the relationships
Pr(R|O,B, I), we first compute an undirected edge (Sec.
2.3.3) between two objects, then conclude on a directed
edge(rsub→obj) (Sec. 2.4).

2.2. Object Detection

We have used Faster-RCNN (Ren et al., 2015) with a VGG-
16 (Simonyan & Zisserman, 2014) backbone for object
detection. For ith object candidate, we obtain visual fea-
tures vRoI

i ∈ R4096, bounding box coordinates bi ∈ R5 and
class label probabilities1 oinit

i ∈ R200. The initial feature
(nin

i ∈ R2048) of ith node is obtained by applying a lin-
ear projection layer(fnlp) on its concatenated features as
described in Eq. 2. We have considered these individual
proposals and their respective features as the initial node
embeddings of the scene graph.

nin
i = fnlp([v

RoI
i , oinit

i , bi]) (2)

2.3. Context Propagation:

The core idea of our approach is the efficient context prop-
agation across all nodes and edges using a Transformer
encoder-decoder architecture (Vaswani et al., 2017). At the
heart of the Transformer lies a self-attention mechanism,
which is briefly described next.

2.3.1. ATTENTION:

Attention mechanisms enable multi-hop information propa-
gation in sequences ans graphs. The Transformer (Vaswani
et al., 2017) architecture uses self-attention mechanisms for
mapping of the global dependencies. One defines attention
as:

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V. (3)

The last equation describes a self-attention function, where
query(Q), keys(K), and values(V) are a set of learnable ma-
trices, and dk is the scaling factor. The output is computed
as a weighted sum of the values, where the weight assigned
to each value is computed by multiplying a query matrix
with its corresponding key.

2.3.2. CONTEXT PROPAGATION FOR OBJECTS:

Contextualization of objects not only enhances object de-
tection (Liu et al., 2018) by exploring the surroundings
of objects, but also encodes more expressive features for
relation classification. For ith node, we have used initial fea-
tures from Eq. 2 along with a positional (pos encn ∈ R2048)

1GloVe embeddings for all classes has been used with a dimen-
sion of 200.
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Scene Graph generation using Relation Transformer

Figure 2. An overview of the proposed Relation Transformer architecture. The network consists of four stages: a) Feature
generation by an object detector and bounding box extraction using RPN, b) Creation of context-rich node embeddings
(light color) using N2N attention from initial nodes (dark color) c) Creation of edge embedding (bicolor based on respective
nodes) using context from all nodes (E2N) and then from other edges (E2E), d) Classification of the relation using
〈subject, edge, objects〉 manner. Best viewed in color.

feature vectors, based on the actual position of the node in
the sequence,

nfinal
i = encoder(nin

i + pos encn(nin
i )). (4)

ofinal
i = argmax(fclassifier(n

final
i )). (5)

After contextualization of the nodes by the encoder2 in Eq.
4, we have obtained final node features (nfinal

i ). Final node
features are subsequently used for two purposes. Firstly,
they are passed to a linear object classifier (Eq. 5) to get
the final object class (ofinal

i ∈ C) probability and finally, the
same node features are passed to the next module for edge
context propagation.

2.3.3. CONTEXT PROPAGATION FOR EDGES

In this module, edge features are captured by accumulating
context information across all nodes and edges. Edges are
highly dependent on the local context, as they are associ-
ated with only a pair of nodes (subject, object). We have
introduced novel changes in decoder, such that the network
learns relational(E.g. spatial, semantic) influences from
other nodes or edges by exploiting both local and global
contexts.

For an edge belonging to ith and jthnode, visual features
evis
ij ∈ R4096 consist of the union of two object boxes bi,j as

shown in Figure 2. Afterwards, spatial features bi,j ∈ R5(bi
and bj) are added with the concatenated GloVe (Pennington
et al., 2014) embedding (esem

ij ) of both classes. Subsequently,
a linear projection layer (felp) is used to obtain the initial
edge embeddings (ein

i,j ∈ R2048) as

eini,j = felp(e
vis
ij + bij + esemij ) (6)

2our encoder block remains same as Transformer, and its archi-
tecture shown in Figure 2.

As mentioned earlier, we have introduced three modifica-
tions in the Transformer decoder network such that it models
the interaction between nodes and edges efficiently.

1. The decoder masked attention has been removed so
that it can attend to the whole sequence, not just part
of it.

2. A novel positional encoding vector has been introduced
(pos enceij ∈ R2048) for edges (ein

i,j) that encodes the
position of both the source nodes, instead of the po-
sition of the edge alone. We hypothesize that it will
be beneficial for the network to distinguish the source
nodes (subject and object) out of all distinct nodes
and the corresponding edges between source nodes
to the other edges. This design bias can accumulate
the global context without losing its focus on the local
context or source nodes.

pos enceij(k,k+1) = [sin(pi/m
2k/ddim), cos(pi/m

2k/ddim)].

pos enceij(k+2,k+3) = [sin(pj/m
2k/ddim), cos(pj/m

2k/ddim)].

(7)

Eq. 7 describes positional encoding for an edge, where
pi and pj are the positions of the nodes ni and nj , m is
maximum number of sequence, ddim ∈ R2048 is same
dimension as ein

i,j , and k denotes the kth position in the
positional encoding features vector.

3. The order of self-attention applied in the decoder has
been altered. At first, E2N self-attention has been
applied from an edge to all the nodes. Then, E2E
attention from an edge to all the edges has been in-
corporated. Since, the edge is created from only two
nodes, E2N attention accumulates necessary global
context from all nodes. Afterwards, E2E attention will
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Model Graph constraint No graph constraint
MeanSGCLS PRDCLS SGCLS PRDCLS

Recall@ 20 50 100 20 50 100 50 100 50 100

Message Passing (Xu et al., 2017) 31.7 34.6 35.4 52.7 59.3 61.3 43.4 47.2 75.2 83.6 52.44
Associative Embedding (Xu et al., 2017) 18.2 21.8 22.6 47.9 54.1 55.4 26.5 30.0 68.0 75.2 41.17
MotifNet(Left to Right) (Zellers et al., 2018) 32.9 35.8 36.5 58.5 65.2 67.1 44.5 47.7 81.1 88.3 55.76
Large Scale VRU (Zhang et al., 2019a) 36.0 36.7 36.7 66.8 68.4 68.4 - - - - 52.16
ReIDN (Zhang et al., 2019b) 36.1 36.8 36.8 66.9 68.4 68.4 48.9 50.8 93.8 97.8 60.49

Relation Transformer (Ours) 43.4 43.6 43.7 68.1 68.5 68.5 60.6 61.7 96.5 98.8 65.34

Table 1. Comparison of our model with state of the art methods tested in Visual Genome (Krishna et al., 2017)

help an edge, enriched with global context, to learn
from edges with similar relational embedding. Finally,
we get contextual edge features ( efinal

i,j ∈ R2048) as,

efinal
i,j = decoder(ein

i,j + pos enceij ) (8)

2.4. Relation Classification

A relation is a directional property, i.e., subject and object
cannot be exchanged. After obtaining the context-riched
node and edge embeddings, a joint relational embedding
(relemb ∈ R2048) has been created consisting of triplets like
〈subject, edge, object〉 followed by a Leaky ReLU (Xu
et al., 2015) non linearity for the predicate classification as
described in Eq. 9. Finally, to get the softmax distribution
of a predicate a fully connected layer (Wfinal) along with the
Frequency Baseline (Zellers et al., 2018) has been added to
model as described in Eq. 10.

relemb = LReLU(frel([n
final
i , efinal

i,j , nfinal
j ])) (9)

Pr(R|B,O, I) = softmax(Wfinal(relemb) + fq(sub, obj))
(10)

3. Experiments
3.1. Dataset and Experimental Setup

We used Visual Genome(VG) (Krishna et al., 2017) for our
training and evaluation. It is one of the largest and most
challenging dataset on scene graph generation for real world
images. To have a fair comparison with present state-of-
the-art models (Zellers et al., 2018; Newell & Deng, 2017;
Zhang et al., 2019b;a), we have used the same refined ver-
sion of VG proposed in (Xu et al., 2017) along with their
official split. This dataset contains the most frequently oc-
curring 150 objects and 50 relationships of VG. We have
followed the same evaluation as in the current benchmark
(Zhang et al., 2019b) and computed scene graph classifica-
tion (SGCLS) and predicate classification (PREDCLS).

3.2. Results and Discussion

Table 1, shows the performance of our method in compari-
son with other methods. Here, methods such as (Xu et al.,
2017; Zellers et al., 2018) have used various techniques of
context propagation, while ReIDN(Zhang et al., 2019b) and
VRU (Zhang et al., 2019a) have used special losses (E.g.
contrastive loss) for better modeling of scene graph. Table
1 demonstrates that our novel context propagation for both
objects and edges significantly improves the performance
even with simple cross-entropy loss.

Additionally, analysis of false prediction provide a great in-
sight that the network learned semantically plausible closer
outputs. E.g. ‘on’ is the most mispredicted relation in eval-
uation settings, which is 56.9% times predicted as ‘of’ for
(sub., obj.) like (face, woman), (wing, plane). Interest-
ingly, the mispredicted ‘face of woman’ is more appropriate
than ‘face on woman’, indicating a network not necessarily
failing to predict correctly rather due to a huge bias in the
dataset to 34.3% ‘on’ relations. More such positive and neg-
ative examples have been listed out in Supplementary. Also,
as mentioned in “No Graph Constraint”, the high recall in
PREDCLS (98.8%) indicates even if the network failed to
predict the actual relation in top1, it is mostly captured when
multiple relations are being allowed in the subject-object
pair.

4. Conclusion
In this paper, we presented a novel approach for scene graph
generation by exploiting local and global interaction of other
objects. The proposed model is based on a novel customiza-
tion of the transformer architecture with integrated N2N,
E2N, and E2E attention. Additionally, we have generated
a visualization of the attention heatmaps to provide insight
into the working of the model3. Our method improves
benchmarks on the Visual Genome dataset.

3see the supplementary material
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Supplementary Material

This is a supplementary material for our paper. Here, we will
discuss more about attention map and qualitative results.

• Analysis of Attention: Here, we present an analysis
of how attention mechanisms help in scene under-
standing. In our approach, attention has been used for
context propagation between node-node, edge-node
as well edge-edge relationships. This interaction has
been visualized using an attention heatmap in Fig. 3.
Here mutual influence between each pair or row and
column is plotted using a score between 0 to 1, where
1 signifies maximum influence, 0 is for minimum. We
have used attention mask from top most layer for both
module.
In Fig. 3 (left), a scene with a seagull flying near the
beach is shown. Its corresponding node to node (N2N)
attention map exhibits detected objects like ‘bird’,
‘wing’, ‘tail’, ‘beach’ and indicates which nodes or
objects are more influential for joint object and relation
classification. For example, the node ‘bird ’ has
high attention for ‘bird’, ‘wing’, ‘tail’, that suggests
what are the nodes related to it and what could be
their potential relationships. Moreover, ‘wing’ has
high attention with ‘beach’ that could be a potential
indicator of influence, suggesting relationship could
be flying over the beach. This is further confirmed
by attention score for edge ‘beach-bird’ in edge to
node (E2N) attention. For other edges like ‘bird-tail ’,
‘bird-wing’, ‘bird’ could be the most influential node
for these edges, thus provide a clear intuition about
the kind of relationship that could exists among these
nodes.
In Fig. 3 (middle), nodes like ‘man’, ‘trunk’, ‘ski’
and their mutual high attention score provide context
interpretability. Also, its associated edge ‘man-ski’
shows high influence for all nodes, that reflects context
awareness of the edge. Similarly, in Fig. 3 (right), the
nodes like ‘glove’, ‘hair’, ‘hand’, shows high mutual
influence in node to node(N2N) attention heatmap.
Also, ‘glove’and ‘sink’ show high attention indicating
contextual influence. The relationships are further
derived from edge to node (E2N) attention where
edges like ‘glove-woman’, ‘hair-woman’, ‘glove-hand’
show high attention with node ‘woman’ suggesting
that the scene consists of a woman who has hair and
that the woman is wearing glove on her hand.

• Qualitative Results: In this section, we will provide a
few more qualitative samples generated by our network
in both positive and negative scenarios. To improve
visibility and interpretability, we only consider the
interaction among ground truth objects and relations

(a) Scenes with objects and bounding boxes with respective de-
tected labels

(b) Node to Node Attention heatmap

(c) Edge to Node Attention heatmap

(d) Generated scene graph

Figure 3. Some example output from our network with
associated attention map and scene graph.

in these examples.

Fig. 4(left column), shows the positive scenario, where
our network is able to detect correct relationships label
despite the presence of repetitive bounding box (boy
and child) or similar objects (giraffe). Thus, it shows
the robustness of the method.

Fig. 5(right column), shows the negative scenario,
where network prediction is different from ground truth
labels. In most of these cases, it was found that pre-
dicted labels are semantically closer to ground truth
labels, and from a human perspective, both could be
right. For example man-at-beach and man-on-beach
both are grammatically correct.
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(a) Scenes with objects and bounding boxes with respective labels

(b) Node to Node Attention heatmap

(c) Edge to Node Attention heatmap

(d) Generated scene graphs

Figure 4. Some positive example outputs from our network
with associated attention map and scene graph.

(a) Scenes with objects and bounding boxes with respective labels

(b) Node to Node Attention heatmap

(c) Edge to Node Attention heatmap

(d) Generated scene graph. Here, blue ones are correctly predicted,
red ones are mispredicted and green ones are the correct ground
truth label for each mispredicted label.

Figure 5. Some negative example outputs from our network
with associated attention map and scene graph.


