
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

Closed Loop Neural-Symbolic Learning via
Integrating Neural Perception, Grammar Parsing, and Symbolic Reasoning

Anonymous Authors1

Abstract
The goal of neural-symbolic computation is to in-
tegrate the connectionist and symbolist paradigms.
Prior methods learn the neural-symbolic models
using reinforcement learning (RL) approaches,
which ignore the error propagation in the sym-
bolic reasoning module and thus converge slowly
with sparse rewards. In this paper, we ad-
dress these issues and close the loop of neural-
symbolic learning by (1) introducing the gram-
mar model as a symbolic prior to bridge neu-
ral perception and symbolic reasoning, and (2)
proposing a novel back-search algorithm which
mimics the top-down human-like learning proce-
dure to propagate the error through the symbolic
reasoning module efficiently. The experiments
are conducted on two weakly-supervised neural-
symbolic tasks: (1) handwritten formula recogni-
tion on the CROHME dataset; (2) visual question
answering on the CLEVR dataset. The results
show that our approach significantly outperforms
the RL methods in terms of performance, converg-
ing speed, and data efficiency.

1. Introduction
Integrating robust connectionist learning and sound sym-
bolic reasoning is a key challenge in modern Artificial Intel-
ligence. Recently, the neural-symbolic paradigm has been
extensively explored in many tasks, such as visual ques-
tion answering (Yi et al., 2018; Vedantam et al., 2019; Mao
et al., 2019) and semantic parsing (Liang et al., 2016; Yin
et al., 2018), often with weak supervision. Weak supervi-
sion in these tasks usually provides pairs of raw inputs and
final outputs, with intermediate symbolic representations
unobserved. Since symbolic reasoning is non-differentiable,
previous methods usually learn the neural-symbolic models
by policy gradient methods like REINFORCE. These meth-
ods have been proved to be time-consuming because they
require generating a large number of samples over the latent
space of symbolic representations with sparse rewards.

To model the recursive compositionality in a sequence of

Figure 1. Comparison between the original neural-symbolic model
learned by REINFORCE (NS-RL) and the proposed neural-
grammar-symbolic model learned by back-search (NGS-BS). In
NS-RL, the neural network predicts an invalid formula, causing a
failure in the symbolic reasoning module. There is no backward
pass in this example since it generates zero reward. In contrast,
NGS-BS predicts a valid formula and searches a correction for its
prediction. The neural network is updated using this correction as
the pseudo label.

symbols, we introduce the grammar model to bridge neural
perception and symbolic reasoning. The structured symbolic
representation often exhibits compositional and recursive
properties over individual symbols in it. Correspondingly,
the grammar models encode symbolic prior about composi-
tion rules, thus can dramatically reduce the solution space
by parsing the sequence of symbols into valid sentences. For
example, in the handwritten formula recognition problem,
the grammar model ensures that the predicted formula is
always valid, as shown in Figure 1.

To make the neural-symbolic learning more efficient, we
propose a novel back-search strategy which mimics hu-
man’s ability to diagnose and correct the samples that can-
not generate desired outputs. Specifically, the back-search
algorithm propagates the error from the root node to the
leaf nodes in the reasoning tree and finds the most prob-
able correction that can generate the desired output. The
correction is further used as a pseudo label for training the
neural network. Figure 1 shows an exemplar backward pass
of the back-search algorithm. We argue that the back-search

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Neural-Grammar-Symbolic

algorithm makes a first step towards closing the learning
loop by propagating the error through the non-differentiable
grammar parsing and symbolic reasoning modules. We also
show that the proposed multi-step back-search algorithm
can serve as a Metropolis-Hastings sampler which samples
the posterior distribution of the symbolic representations in
the maximum likelihood estimation.

We conduct experiments on two weakly-supervised tasks:
(1) handwritten formula recognition on the CHROME
dataset; (2) visual question answering on the CLEVR
dataset. The evaluation results show that the proposed
Neural-Grammar-Symbolic (NGS) model with back-search
significantly outperforms the baselines in terms of perfor-
mance, convergence speed, and data efficiency. We present
in this paper a summary of our full paper (Li et al., 2020),
which is also included in the supplementary material for
more details.

2. Neural-Grammar-Symbolic Model (NGS)
2.1. Inference

Let x be the input (e.g.an image or question), z be the hid-
den symbolic representation, and y be the desired output
inferred by z. The proposed NGS model combines neu-
ral perception, grammar parsing, and symbolic reasoning
modules efficiently to perform the inference.

Neural Perception. The neural network is used as a percep-
tion module which maps the high-dimensional input x to a
normalized probability distribution of the hidden symbolic
representation z:

pθ(z|x) = softmax(φθ(z, x)) (1)

=
exp(φθ(z, x))∑
z′ exp(φθ(z′, x))

, (2)

where φθ(z, x) is a scoring function or a negative energy
function represented by a neural network with parameters θ.

Grammar Parsing. Take z as a sequence of individual
symbols: z = (z1, z2, ..., zl), zi ∈ Σ, where Σ denotes
the vocabulary of possible symbols. The neural network is
powerful at modeling the mapping between x and z, but the
recursive compositionality among the individual symbols zi
is not well captured. Grammar is a natural choice to tackle
this problem by modeling the compositional properties in
sequence data. Take the context-free grammar (CFG) as an
example. A context-free grammar G in Chomsky Normal
Form is defined by a 4-tuple G = (V,Σ, R, S), where

• V is a finite set of non-terminal symbols that can be
replaced by/expanded to a sequence of symbols.

• Σ is a finite set of terminal symbols that represent
actual words in a language, which cannot be further ex-
panded. Here Σ is the vocabulary of possible symbols.

• R is a finite set of production rules describing the re-
placement of symbols, typically of the form A→ BC
or A→ α, where A,B,C ∈ V and α ∈ Σ.

• S ∈ V is the start symbol.

Given a formal grammar, parsing is the process of deter-
mining whether a string of symbolic nodes can be accepted
according to the production rules in the grammar. In neural-
symbolic tasks, the objective of parsing is to find the most
probable z that can be accepted by the grammar:

ẑ = arg max
z∈L(G)

pθ(z|x) (3)

where L(G) denotes the language of G, i.e., the set of all
valid z accepted by G.

Traditional grammar parsers can only work on discrete sym-
bols. Qi et al. (2018) proposes a generalized version of
Earley Parser, which takes a probability sequence as input
and outputs the most probable parse. We use this method to
compute the best parse ẑ in Equation 3.

Symbolic Reasoning. Given the parsed symbolic represen-
tation ẑ, the symbolic reasoning module performs determin-
istic inference with ẑ and the domain-specific knowledge
∆. Formally, we want to find the entailed sentence ŷ given
ẑ and ∆:

ŷ : ẑ ∧ ∆ |= ŷ (4)

Since the inference process is deterministic, we re-write the
above equation as:

ŷ = f(ẑ; ∆), (5)

where f denotes inference rules under the domain ∆.

2.2. Learning

We formulate the learning process as a weakly-supervised
learning of the neural network model θ where the symbolic
representation z is missing, and the grammar model G,
domain-specific language ∆, the symbolic inference rules
f are given.

2.2.1. 1-STEP BACK-SEARCH (1-BS)

As shown in Figure 1, previous methods using policy gra-
dient to learn the model discard all the samples with zero
reward and learn nothing from them. It makes the learn-
ing process inefficient and unstable. However, humans can
learn from the wrong predictions by diagnosing and cor-
recting the wrong answers according to the desired outputs
with top-down reasoning. Based on such observation, we
propose a 1-step back-search (1-BS) algorithm which can
correct wrong samples and use the corrections as pseudo

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Neural-Grammar-Symbolic

labels for training. The 1-BS algorithm closes the learn-
ing loop since the error can also be propagated through the
non-differentiable grammar parsing and symbolic reasoning
modules. Specifically, we find the most probable correction
for the wrong prediction by back-tracking the symbolic rea-
soning tree and propagating the error from the root node
into the leaf nodes in a top-down manner.

The 1-BS algorithm is implemented with a priority queue as
shown in Algorithm 1. The 1-BS gradually searches down
the reasoning tree τ̂ starting from the root node S to the leaf
nodes. Specifically, each element in the priority queue is
defined as a 3-tuple (A,αA, p), where A ∈ V ∪ Σ is the
current visiting node. αA is the expected value on this node
thus y = f(ẑ(A → αA); ∆)), where ẑ(A → αA) denotes
that the sub-tree of A is replaced by αA. p is the visiting
priority, which reflects the potential of changing the current
node or its child nodes to correct the wrong answer.

The solve(·|∆, G) function is an error propagation func-
tion which aims at computing an expected value αB from
its parent’s expected value αA given the rules. Therefore
f(ẑ(B → αB); ∆)) = f(ẑ(A → αA); ∆)) = y. Accord-
ingly, the priority for this change is defined as the probability
ratio:

p(B → αB) =

{
1−p(B)
p(B) , if B /∈ Σ
p(αB)
p(B) , if B ∈ Σ & αB ∈ Σ.

(6)

IfB ∈ Σ and αB /∈ Σ, it means we need to correct the termi-
nal node to a value that is not in the vocabulary. Therefore,
this change is not possible and thus should be discarded.
Please refer to the supplementary material for some illustra-
tive examples of the 1-BS process.

In the 1-BS, we make a greedy assumption that only one
symbol can be replaced at a time. This assumption implies
only searching the neighborhood of ẑ at one-step distance.

Algorithm 1 1-step back-search (1-BS)

1: Input: ẑ, S, y
2: q = PriorityQueue()
3: q.push(S, y, 1)
4: while A,αA, p = q.pop() do
5: if A ∈ Σ then
6: z∗ = ẑ(A→ αA)
7: return z∗
8: for B ∈ child(A) do
9: αB = solve(B,A, αA|∆, G)

10: q.push(B,αB , p(B → αB))
11: return ∅

2.2.2. MULTI-STEP BACK-SEARCH (m-BS)

We extend the 1-step back-search to a multi-step back-search
(m-BS) by incorporating a RANDOMWALK function, as

Algorithm 2 m-step back-search (m-BS)

1: Hyperparameters: T , λ
2: Input: ẑ, y
3: z(0) = ẑ
4: for t← 0 to T − 1 do
5: z∗ = 1-BS(zt, y)
6: draw u ∼ U(0, 1)
7: if u ≤ λ and z∗ 6= ∅ then
8: zt+1 = z∗

9: else
10: zt+1 = RANDOMWALK(zt)
11: return zT
12:
13: function RANDOMWALK(zt)
14: sample z∗ ∼ g(·|zt)
15: compute acceptance ratio a = min(1, pθ(z

∗|x)
pθ(zt|x))

16: draw u ∼ U(0, 1)

17: zt+1 =

{
z∗, if u ≤ a
zt, otherwise.

shown in Algorithm 2. In each step, the m-BS proposes
1-BS search with probability of λ (λ < 1) and random walk
with probability of 1 − λ. The combination of 1-BS and
random walk helps traverse the whole solution space with
non-zero probabilities.

Random Walk: Defining a Poisson distribution for the
random walk as

g(z1|z2) = Poisson(d(z1, z2);β), (7)

where d(z1, z2) denotes the edit distance between z1, z2,
and β is equal to the expected value of d and also to its
variance. β is set as 1 in most cases due to the preference
for a short-distance random walk. The acceptance ratio for
sampling a z∗ from g(·|zt) is a = min(1, r(zt, z∗)), where

r(zt, z∗) =
pθ(z

∗|x)

pθ(zt|x)
. (8)

Notably, the m-BS algorithm serves as a Metropolis-
Hastings sampler which samples from the posterior dis-
tribution of symbolic representations given the final results.

3. Experiments and Results
3.1. Handwritten Formula Recognition

The handwritten formula recognition task tries to recognize
each mathematical symbol given a raw image of the hand-
written formula. We learn this task in a weakly-supervised
manner, where raw image of the handwritten formula is
given as input, and the computed results of the formulas
is treated as outputs. The ground-truth formula composed

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Neural-Grammar-Symbolic

by individual symbols is hidden. Our task is to predict the
formula, which could further be executed to calculate the
final result. We report the calculation accuracy (i.e.whether
the calculation of predicted formula yields to the correct
result) on the CROHME dataset.

Learning Curve. Figure 2 shows the learning curves of dif-
ferent models. The proposed NGS-m-BS converges much
faster and achieves higher accuracy compared with other
models. NGS-RL fails without pre-training and rarely im-
proves during the entire training process. NGS-MAPO can
learn the model without pre-training, but it takes a long time
to start efficient learning, which indicates that MAPO suffers
from the cold-start problem and needs time to accumulate
rewarding samples. Pre-training the LeNet solves the cold
start problem for NGS-RL and NGS-MAPO. However, the
training curves for these two models are quite noisy and are
hard to converge even after 100k iterations. Our NGS-m-BS
model learns from scratch and avoids the cold-start problem.
It converges quickly with nearly perfect accuracy, with a
much smoother training curve than the RL baselines.

0k 20k 40k 60k 80k 100k
Iteration

0.0

0.2

0.4

0.6

0.8

1.0

T
ra

in
in

g
R
es

ul
t A

cc
ur

ac
y

NGS-m-BS
NGS-MAPO
NGS-MAPO-Pretrain
NGS-RL-Pretrain
NGS-RL

Figure 2. The learning curves of calculation accuracy.

Data Efficiency. Table 1 shows the accuracies on the test
set while using various percentage of training data. All
models are trained with 15K iterations. It turns out the NGS-
m-BS is much more data-efficient than the RL methods.
Specifically, when only using 25% of the training data, NGS-
m-BS can get a calculation accuracy of 93.3%, while NGS-
MAPO only gets 5.1%.

Table 1. The calculation accuracy on the test set using various
percentage of training data.

Model 25% 50 % 75 % 100%
NGS-RL 0.035 0.036 0.034 0.034
NGS-MAPO 0.051 0.095 0.305 0.717
NGS-RL-Pretrain 0.534 0.621 0.663 0.685
NGS-MAPO-Pretrain 0.687 0.773 0.893 0.956
NGS-m-BS 0.933 0.957 0.975 0.985

3.2. Neural-Symbolic Visual Question Answering

Following (Yi et al., 2018), the neural-symbolic visual ques-
tion answering task tries to parse the question into functional

program and then use a program executor that runs the pro-
gram on the structural scene representation to obtain the
answer. The functional program is hidden. We report the
answer accuracy on the CLEVR dataset (Johnson et al.,
2017).

Learning Curve. Figure 3 shows the learning curves of
different model variants. NGS-BS converges much faster
and achieves higher VQA accuracy on the test set compared
with the RL baselines. Though taking a long time, NGS-RL
does converge, while NS-RL fails. This fact indicates that
the grammar model plays a critical role in this task. Con-
ceivably, the latent functional program space is combinatory,
but the grammar model rules out all invalid programs that
cannot be executed by the symbolic reasoning module. It
largely reduces the solution space in this task.

Figure 3. The learning curves of answer accuracy.

Data Efficiency Table 2 shows the accuracies on the
CLEVR validation set when different portions of training
data are used. With less training data, the performances
decrease for both NGS-RL and NGS-m-BS, but NGS-m-BS
still consistently obtains higher accuracies.

Table 2. The accuracy on the CLEVR validation set using different
percentage of training data. All models are trained 30k iterations.

Model 25% 50 % 75 % 100%
NS-RL 0.090 0.091 0.099 0.125
NGS-RL 0.678 0.839 0.905 0.969
NGS-m-BS 0.873 0.936 1.000 1.000

4. Conclusions
In this work, we propose a neural-grammar-symbolic model
and a back-search algorithm to close the loop of neural-
symbolic learning. We demonstrate that the grammar model
can dramatically reduce the solution space by eliminating
invalid possibilities in the latent representation space. The
back-search algorithm endows the NGS model with the
capability of learning from wrong samples, making the
learning more stable and efficient. One future direction is to
learn the symbolic prior (i.e.the grammar rules and symbolic
inference rules) automatically from the data.

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Neural-Grammar-Symbolic

References
Johnson, J., Hariharan, B., van der Maaten, L., Fei-Fei, L.,

Lawrence Zitnick, C., and Girshick, R. Clevr: A diagnos-
tic dataset for compositional language and elementary visual
reasoning. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 2901–2910, 2017.

Li, Q., Huang, S., Hong, Y., Chen, Y., Wu, Y. N., and Zhu, S.-C.
Closed loop neural-symbolic learning via integrating neural
perception, grammar parsing, and symbolic reasoning. In Inter-
national Conference on Machine Learning (ICML), 2020.

Liang, C., Berant, J., Le, Q., Forbus, K. D., and Lao, N. Neural
symbolic machines: Learning semantic parsers on freebase with
weak supervision. arXiv preprint arXiv:1611.00020, 2016.

Mao, J., Gan, C., Kohli, P., Tenenbaum, J. B., and Wu, J.
The neuro-symbolic concept learner: Interpreting scenes,
words, and sentences from natural supervision. arXiv preprint
arXiv:1904.12584, 2019.

Qi, S., Jia, B., and Zhu, S.-C. Generalized earley parser: Bridging
symbolic grammars and sequence data for future prediction.
ICML, 2018.

Vedantam, R., Desai, K., Lee, S., Rohrbach, M., Batra, D.,
and Parikh, D. Probabilistic neural-symbolic models for
interpretable visual question answering. arXiv preprint
arXiv:1902.07864, 2019.

Yi, K., Wu, J., Gan, C., Torralba, A., Kohli, P., and Tenenbaum, J.
Neural-symbolic vqa: Disentangling reasoning from vision and
language understanding. In NeurIPS, 2018.

Yin, P., Zhou, C., He, J., and Neubig, G. Structvae: Tree-structured
latent variable models for semi-supervised semantic parsing.
arXiv preprint arXiv:1806.07832, 2018.

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

Supplementary Materials (Full Paper) for
Closed Loop Neural-Symbolic Learning via

Integrating Neural Perception, Grammar Parsing, and Symbolic Reasoning

Anonymous Authors1

Abstract
The goal of neural-symbolic computation is to in-
tegrate the connectionist and symbolist paradigms.
Prior methods learn the neural-symbolic models
using reinforcement learning (RL) approaches,
which ignore the error propagation in the sym-
bolic reasoning module and thus converge slowly
with sparse rewards. In this paper, we address
these issues and close the loop of neural-symbolic
learning by (1) introducing the grammar model
as a symbolic prior to bridge neural perception
and symbolic reasoning, and (2) proposing a novel
back-search algorithm which mimics the top-
down human-like learning procedure to propa-
gate the error through the symbolic reasoning
module efficiently. We further interpret the pro-
posed learning framework as maximum likeli-
hood estimation using Markov chain Monte Carlo
sampling and the back-search algorithm as a
Metropolis-Hastings sampler. The experiments
are conducted on two weakly-supervised neural-
symbolic tasks: (1) handwritten formula recogni-
tion on the CROHME dataset; (2) visual question
answering on the CLEVR dataset. The results
show that our approach significantly outperforms
the RL methods in terms of performance, converg-
ing speed, and data efficiency.

1. Introduction
Integrating robust connectionist learning and sound sym-
bolic reasoning is a key challenge in modern Artificial Intel-
ligence. Deep neural networks (LeCun et al., 2015a; 1995;
Hochreiter & Schmidhuber, 1997) provide us powerful and
flexible representation learning that has achieved state-of-
the-art performances across a variety of AI tasks such as
image classification (Krizhevsky et al., 2012; Szegedy et al.,
2015; He et al., 2016), machine translation (Sutskever et al.,
2014), and speech recognition (Graves et al., 2013). How-
ever, it turns out that many aspects of human cognition, such
as systematic compositionality and generalization (Fodor

Figure 1. Comparison between the original neural-symbolic model
learned by REINFORCE (NS-RL) and the proposed neural-
grammar-symbolic model learned by back-search (NGS-BS). In
NS-RL, the neural network predicts an invalid formula, causing a
failure in the symbolic reasoning module. There is no backward
pass in this example since it generates zero reward. In contrast,
NGS-BS predicts a valid formula and searches a correction for its
prediction. The neural network is updated using this correction as
the pseudo label.

et al., 1988; Marcus, 1998; Fodor & Lepore, 2002; Calvo
& Symons, 2014; Marcus, 2018; Lake & Baroni, 2018),
cannot be captured by neural networks. On the other hand,
symbolic reasoning supports strong abstraction and gener-
alization but is fragile and inflexible. Consequently, many
methods have focused on building neural-symbolic models
to combine the best of deep representation learning and
symbolic reasoning (Sun, 1994; Garcez et al., 2008; Bader
et al., 2009; Besold et al., 2017; Yi et al., 2018).

Recently, this neural-symbolic paradigm has been exten-
sively explored in the tasks of the visual question answer-
ing (VQA) (Yi et al., 2018; Vedantam et al., 2019; Mao
et al., 2019), vision-language navigation (Anderson et al.,
2018; Fried et al., 2018), embodied question answering
(Das et al., 2018a;b), and semantic parsing (Liang et al.,
2016; Yin et al., 2018), often with weak supervision. Con-
cretely, for these tasks, neural networks are used to map raw
signals (images/questions/instructions) to symbolic repre-
sentations (scenes/programs/actions), which are then used

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Neural-Grammar-Symbolic

to perform symbolic reasoning/execution to generate final
outputs. Weak supervision in these tasks usually provides
pairs of raw inputs and final outputs, with intermediate sym-
bolic representations unobserved. Since symbolic reasoning
is non-differentiable, previous methods usually learn the
neural-symbolic models by policy gradient methods like
REINFORCE. The policy gradient methods generate sam-
ples and update the policy based on the generated samples
that happen to hit high cumulative rewards. No efforts are
made to improve each generated sample to increase its cu-
mulative reward. Thus the learning has been proved to
be time-consuming because it requires generating a large
number of samples over a large latent space of symbolic
representations with sparse rewards, in the hope that some
samples may be lucky enough to hit high rewards so that
such lucky samples can be utilized for updating the policy.
As a result, policy gradients methods converge slowly or
even fail to converge without pre-training the neural net-
works on fully-supervised data.

To model the recursive compositionality in a sequence of
symbols, we introduce the grammar model to bridge neural
perception and symbolic reasoning. The structured symbolic
representation often exhibits compositional and recursive
properties over individual symbols in it. Correspondingly,
the grammar models encode symbolic prior about composi-
tion rules, thus can dramatically reduce the solution space
by parsing the sequence of symbols into valid sentences. For
example, in the handwritten formula recognition problem,
the grammar model ensures that the predicted formula is
always valid, as shown in Figure 1.

To make the neural-symbolic learning more efficient, we
propose a novel back-search strategy which mimics hu-
man’s ability to diagnose and correct the samples that can-
not generate desired outputs. Specifically, the back-search
algorithm propagates the error from the root node to the
leaf nodes in the reasoning tree and finds the most prob-
able correction that can generate the desired output. The
correction is further used as a pseudo label for training the
neural network. Figure 1 shows an exemplar backward pass
of the back-search algorithm. We argue that the back-search
algorithm makes a first step towards closing the learning
loop by propagating the error through the non-differentiable
grammar parsing and symbolic reasoning modules. We also
show that the proposed multi-step back-search algorithm
can serve as a Metropolis-Hastings sampler which samples
the posterior distribution of the symbolic representations in
the maximum likelihood estimation in Subsubsection 3.2.3.

We conduct experiments on two weakly-supervised neural-
symbolic tasks: (1) handwritten formula recognition on the
CHROME dataset, where the input image and the formula
result are given during training, while the formula is hidden;
(2) visual question answering on the CLEVR dataset. The

question, image, and answer are given, while the functional
program generated by the question is hidden. The evaluation
results show that the proposed Neural-Grammar-Symbolic
(NGS) model with back-search significantly outperforms the
baselines in terms of performance, convergence speed, and
data efficiency. The ablative experiments also demonstrate
the efficacy of the multi-step back-search algorithm and the
incorporation of grammar in the neural-symbolic model.

2. Related Work
Neural-symbolic Computation. Researchers have pro-
posed to combine statistical learning and symbolic reason-
ing in the AI community, with pioneer works devoted to
different aspects including representation learning and rea-
soning (Sun, 1994; Garcez et al., 2008), knowledge abstrac-
tion (Hinton et al., 2006; Bader et al., 2009), knowledge
transfer (Falkenhainer et al., 1989; Yang et al., 2009), etc.
Recent research shifts the focus to the application of neural-
symbolic integration, where a large amount of heteroge-
neous data and knowledge descriptions are needed. For
example neural-symbolic VQA (Yi et al., 2018; Vedantam
et al., 2019; Mao et al., 2019), semantic parsing in Natural
Language Processing (NLP) (Liang et al., 2016; Yin et al.,
2018), math word problem (Lample & Charton, 2019; Lee
et al., 2019) and program synthesis (Evans & Grefenstette,
2018; Kalyan et al., 2018; Manhaeve et al., 2018). Different
from previous methods, the proposed NGS model considers
the compositionality and recursivity in natural sequences
of symbols and brings together the neural perception and
symbolic reasoning module with a grammar model.

Grammar Model. Grammar model has been adopted in
various tasks for its advantage in modeling compositional
and recursive structures, like image parsing (Zhao & Zhu,
2011), video parsing (Gupta et al., 2009; Qi et al., 2018),
scene understanding (Huang et al., 2018; Jiang et al., 2018),
and task planning (Xie et al., 2018). By integrating the
grammar into the neural-symbolic task as a symbolic prior
for the first time, the grammar model ensures the desired de-
pendencies and structures for the symbol sequence and gen-
erates valid sentences for symbolic reasoning. Furthermore,
it shrinks the search space greatly during the back-search
algorithm, thus improve the learning efficiency significantly.

Policy Gradient. Policy gradient methods like REIN-
FORCE (Williams, 1992) are the most commonly used
algorithm for the neural-symbolic tasks to connect the learn-
ing gap between neural networks and symbolic reason-
ing (Mascharka et al., 2018; Mao et al., 2019; Andreas
et al., 2017; Das et al., 2018b; Bunel et al., 2018; Guu
et al., 2017). However, original REINFORCE algorithm
suffers from large sample estimate variance, sparse rewards
from cold start and exploitation-exploration dilemma, which
lead to unstable learning dynamics and poor data efficiency.

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Neural-Grammar-Symbolic

Many papers propose to tackle this problem (Liang et al.,
2016; Guu et al., 2017; Liang et al., 2018; Wang et al., 2018;
Agarwal et al., 2019). Specifically, Liang et al. (2016) uses
iterative maximum likelihood to find pseudo-gold symbolic
representations, and then add these representations to the
REINFORCE training set. Guu et al. (2017) combines the
systematic beam search employed in maximum marginal
likelihood with the greedy randomized exploration of REIN-
FORCE. Liang et al. (2018) proposes Memory Augmented
Policy Optimization (MAPO) to express the expected return
objective as a weighted sum of an expectation over the high-
reward history trajectories, and a separate expectation over
new trajectories. Although utilizing positive representations
from either beam search or past training process, these meth-
ods still cannot learn from negative samples and thus fail
to explore the solution space efficiently. On the contrary,
we propose to diagnose and correct the negative samples
through the back-search algorithm under the constraint of
grammar and symbolic reasoning rules. Intuitively speak-
ing, the proposed back-search algorithm traverses around
the negative sample and find a nearby positive sample to
help the training.

3. Neural-Grammar-Symbolic Model (NGS)
In this section, we will first describe the inference and learn-
ing algorithms of the proposed neural-grammar-symbolic
(NGS) model. Then we provide an interpretation of our
model based on maximum likelihood estimation (MLE)
and draw the connection between the proposed back-search
algorithm and Metropolis-Hastings sampler. We further
introduce the task-specific designs in Section 4.

3.1. Inference

In a neural-symbolic system, let x be the input (e.g.an im-
age or question), z be the hidden symbolic representation,
and y be the desired output inferred by z. The proposed
NGS model combines neural perception, grammar parsing,
and symbolic reasoning modules efficiently to perform the
inference.

Neural Perception. The neural network is used as a percep-
tion module which maps the high-dimensional input x to a
normalized probability distribution of the hidden symbolic
representation z:

pθ(z|x) = softmax(φθ(z, x)) (1)

=
exp(φθ(z, x))∑
z′ exp(φθ(z′, x))

, (2)

where φθ(z, x) is a scoring function or a negative energy
function represented by a neural network with parameters θ.

Grammar Parsing. Take z as a sequence of individual
symbols: z = (z1, z2, ..., zl), zi ∈ Σ, where Σ denotes

the vocabulary of possible symbols. The neural network is
powerful at modeling the mapping between x and z, but the
recursive compositionality among the individual symbols zi
is not well captured. Grammar is a natural choice to tackle
this problem by modeling the compositional properties in
sequence data.

Take the context-free grammar (CFG) as an example. In
formal language theory, a CFG is a type of formal grammar
containing a set of production rules that describe all possible
sentences in a given formal language. Specifically, a context-
free grammar G in Chomsky Normal Form is defined by a
4-tuple G = (V,Σ, R, S), where

• V is a finite set of non-terminal symbols that can be
replaced by/expanded to a sequence of symbols.

• Σ is a finite set of terminal symbols that represent
actual words in a language, which cannot be further ex-
panded. Here Σ is the vocabulary of possible symbols.

• R is a finite set of production rules describing the re-
placement of symbols, typically of the form A→ BC
or A → α, where A,B,C ∈ V and α ∈ Σ. A pro-
duction rule replaces the left-hand side non-terminal
symbols by the right-hand side expression. For ex-
ample, A → BC|α means that A can be replaced by
either BC or α.

• S ∈ V is the start symbol.

Given a formal grammar, parsing is the process of deter-
mining whether a string of symbolic nodes can be accepted
according to the production rules in the grammar. If the
string is accepted by the grammar, the parsing process gen-
erates a parse tree. A parse tree represents the syntactic
structure of a string according to certain CFG. The root
node of the tree is the grammar root. Other non-leaf nodes
correspond to non-terminals in the grammar, expanded ac-
cording to grammar production rules. The leaf nodes are
terminal nodes. All the leaf nodes together form a sentence.

In neural-symbolic tasks, the objective of parsing is to find
the most probable z that can be accepted by the grammar:

ẑ = arg max
z∈L(G)

pθ(z|x) (3)

where L(G) denotes the language of G, i.e., the set of all
valid z that accepted by G.

Traditional grammar parsers can only work on discrete sym-
bols. Qi et al. (2018) proposes a generalized version of
Earley Parser, which takes a probability sequence as input
and outputs the most probable parse. We use this method to
compute the best parse ẑ in Equation 3.

Symbolic Reasoning. Given the parsed symbolic represen-
tation ẑ, the symbolic reasoning module performs determin-
istic inference with ẑ and the domain-specific knowledge

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Neural-Grammar-Symbolic

∆. Formally, we want to find the entailed sentence ŷ given
ẑ and ∆:

ŷ : ẑ ∧ ∆ |= ŷ (4)

Since the inference process is deterministic, we re-write the
above equation as:

ŷ = f(ẑ; ∆), (5)

where f denotes complete inference rules under the domain
∆. The inference rules generate a reasoning path τ̂ that
leads to the predicted output ŷ from ẑ and ∆. The reasoning
path τ̂ has a tree structure with the root node ŷ and the leaf
nodes from ẑ or ∆.

3.2. Learning

It is challenging to obtain the ground truth of the symbolic
representation z, and the rules (i.e.grammar rules and the
symbolic inference rules) are usually designed explicitly by
human knowledge. We formulate the learning process as
a weakly-supervised learning of the neural network model
θ where the symbolic representation z is missing, and the
grammar model G, domain-specific language ∆, the sym-
bolic inference rules f are given.

3.2.1. 1-STEP BACK-SEARCH (1-BS)

As shown in Figure 1, previous methods using policy gra-
dient to learn the model discard all the samples with zero
reward and learn nothing from them. It makes the learn-
ing process inefficient and unstable. However, humans can
learn from the wrong predictions by diagnosing and cor-
recting the wrong answers according to the desired outputs
with top-down reasoning. Based on such observation, we
propose a 1-step back-search (1-BS) algorithm which can
correct wrong samples and use the corrections as pseudo
labels for training. The 1-BS algorithm closes the learn-
ing loop since the error can also be propagated through the
non-differentiable grammar parsing and symbolic reasoning
modules. Specifically, we find the most probable correction
for the wrong prediction by back-tracking the symbolic rea-
soning tree and propagating the error from the root node
into the leaf nodes in a top-down manner.

The 1-BS algorithm is implemented with a priority queue as
shown in Algorithm 1. The 1-BS gradually searches down
the reasoning tree τ̂ starting from the root node S to the leaf
nodes.

Specifically, each element in the priority queue is defined
as a 3-tuple (A,αA, p), where A ∈ V ∪ Σ is the current
visiting node. αA is the expected value on this node thus
y = f(ẑ(A → αA); ∆)), where ẑ(A → αA) denotes that
the sub-tree of A is replaced by αA. p is the visiting priority,
which reflects the potential of changing the current node or
its child nodes to correct the wrong answer.

The solve(·|∆, G) function is an error propagation func-
tion which aims at computing an expected value αB from
its parent’s expected value αA given the rules. Therefore
f(ẑ(B → αB); ∆)) = f(ẑ(A → αA); ∆)) = y. Accord-
ingly, the priority for this change is defined as the probability
ratio:

p(B → αB) =

{
1−p(B)
p(B) , if B /∈ Σ
p(αB)
p(B) , if B ∈ Σ & αB ∈ Σ.

(6)

IfB ∈ Σ and αB /∈ Σ, it means we need to correct the termi-
nal node to a value that is not in the vocabulary. Therefore,
this change is not possible and thus should be discarded.
Please refer to the supplementary material for some illustra-
tive examples of the 1-BS process.

In the 1-BS, we make a greedy assumption that only one
symbol can be replaced at a time. This assumption implies
only searching the neighborhood of ẑ at one-step distance.
In Subsubsection 3.2.3, the 1-BS is extended to the multi-
step back-search algorithm, which allows searching beyond
one-step distance.

Algorithm 1 1-step back-search (1-BS)

1: Input: ẑ, S, y
2: q = PriorityQueue()
3: q.push(S, y, 1)
4: while A,αA, p = q.pop() do
5: if A ∈ Σ then
6: z∗ = ẑ(A→ αA)
7: return z∗
8: for B ∈ child(A) do
9: αB = solve(B,A, αA|∆, G)

10: q.push(B,αB , p(B → αB))
11: return ∅

3.2.2. MAXIMUM LIKELIHOOD ESTIMATION

Since z is conditioned on x and y is conditioned on z, the
likelihood for the observation (x, y) marginalized over z is:

p(y|x) =
∑
z

p(y, z|x) =
∑
z

p(y|z)pθ(z|x). (7)

The learning goal is to maximize the observed-data log
likelihood L(x, y) = log p(y|x).

By taking derivative, the gradient for the parameter θ is
given by

∇θL(x, y) = ∇θ log p(y|x)

=
1

p(y|x)
∇θp(y|x)

=
∑
z

p(y|z)pθ(z|x)∑
z′ p(y|z′)pθ(z′|x)

∇θ log pθ(z|x)

= Ez∼p(z|x,y)[∇θ log pθ(z|x)], (8)

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Neural-Grammar-Symbolic

where p(z|x, y) is the posterior distribution of z given x, y.
Since p(y|z) is computed by the symbolic reasoning module
and can only be 0 or 1, p(z|x, y) can be written as:

p(z|x, y) =
p(y|z)pθ(z|x)∑
z′ p(y|z′)pθ(z′|x)

=

{
0, for z 6∈ Q

pθ(z|x)∑
z′∈Q pθ(z

′|x) , for z ∈ Q (9)

where Q = {z : p(y|z) = 1} = {z : f(z; ∆) = y} is the
set of z that generates y. Usually Q is a very small subset
of the whole space of z.

Equation 9 indicates that z is sampled from the posterior
distribution p(z|x, y), which only has non-zero probabilities
on Q, instead of the whole space of z. Unfortunately, com-
puting the posterior distribution is not efficient as evaluating
the normalizing constant for this distribution requires sum-
ming over all possible z, and the computational complexity
of the summation grows exponentially.

Nonetheless, it is feasible to design algorithms that sam-
ple from this distribution using Markov chain Monte Carlo
(MCMC). Since z is always trapped in the modes where
p(z|x, y) = 0, the remaining question is how we can sam-
ple the posterior distribution p(z|x, y) efficiently to avoid
redundant random walk at states with zero probabilities.

3.2.3. m-BS AS METROPOLIS-HASTINGS SAMPLER

Algorithm 2 m-step back-search (m-BS)

1: Hyperparameters: T , λ
2: Input: ẑ, y
3: z(0) = ẑ
4: for t← 0 to T − 1 do
5: z∗ = 1-BS(zt, y)
6: draw u ∼ U(0, 1)
7: if u ≤ λ and z∗ 6= ∅ then
8: zt+1 = z∗

9: else
10: zt+1 = RANDOMWALK(zt)
11: return zT
12:
13: function RANDOMWALK(zt)
14: sample z∗ ∼ g(·|zt)
15: compute acceptance ratio a = min(1, pθ(z

∗|x)
pθ(zt|x))

16: draw u ∼ U(0, 1)

17: zt+1 =

{
z∗, if u ≤ a
zt, otherwise.

In order to perform efficient sampling, we extend the 1-
step back search to a multi-step back search (m-BS), which
serves as a Metropolis-Hastings sampler.

A Metropolis-Hastings sampler for a probability distribution
π(s) is a MCMC algorithm that makes use of a proposal
distribution Q(s′|s) from which it draws samples and uses
an acceptance/rejection scheme to define a transition kernel
with the desired distribution π(s). Specifically, given the
current state s, a sample s′ 6= s drawn from Q(s′|s) is
accepted as the next state with probability

A(s, s′) = min

{
1,
π(s′)Q(s|s′)
π(s)Q(s′|s)

}
. (10)

Since it is impossible to jump between the states with zero
probability, we define p′(z|x, y) as a smoothing of p(z|x, y)
by adding a small constant ε to p(y|z):

p′(z|x, y) =
[p(y|z) + ε]pθ(z|x)∑
z′ [p(y|z′) + ε]pθ(z′|x)

(11)

As shown in Algorithm 2, in each step, the m-BS proposes
1-BS search with probability of λ (λ < 1) and random walk
with probability of 1 − λ. The combination of 1-BS and
random walk helps the sampler to traverse all the states with
non-zero probabilities and ensures the Markov chain to be
ergodic.

Random Walk: Defining a Poisson distribution for the
random walk as

g(z1|z2) = Poisson(d(z1, z2);β), (12)

where d(z1, z2) denotes the edit distance between z1, z2,
and β is equal to the expected value of d and also to its
variance. β is set as 1 in most cases due to the preference
for a short-distance random walk. The acceptance ratio for
sampling a z∗ from g(·|zt) is a = min(1, r(zt, z∗)), where

r(zt, z∗) =
q(z∗)(1− λ)g(zt|z∗)
q(zt)(1− λ)g(z∗|zt)

=
pθ(z

∗|x)

pθ(zt|x)
. (13)

1-BS: While proposing the z∗ with 1-BS, we search a z∗

that satisfies p(y|z∗) = 1. If z∗ is proposed, the acceptance
ratio for is a = min(1, r(zt, z∗)), where

r(z(t), z∗) =
q(z∗)[0 + (1− λ)g(zt|z∗)]

q(zt) · [λ+ (1− λ)g(z∗|z(t))]
(14)

=
1 + ε

ε
· pθ(z

∗|x)

pθ(zt|x)
· (1− λ)g(zt|z∗)
λ+ (1− λ)g(z∗|zt)

.

q(z) = [p(y|z) + ε]pθ(z|x) is denoted as the numerator of
p′(z|x, y). With an enough small ε, 1+ε

ε � 1, r(zt, z∗) > 1,
we will always accept z∗.

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Neural-Grammar-Symbolic

Notably, the 1-BS algorithm tries to transit the current state
into a state where z∗ = 1-BS(zt, y), making movements in
directions of increasing the posterior probability. Similar to
the gradient-based MCMCs like Langevin dynamics (Duane
& Kogut, 1986; Welling & Teh, 2011), this is the main
reason that the proposed method can sample the posterior
efficiently.

3.2.4. COMPARISON WITH POLICY GRADIENT

Since grammar parsing and symbolic reasoning are non-
differentiable, most of the previous approaches for neural-
symbolic learning use policy gradient like REINFORCE
to learn the neural network. Treat pθ(z|x) as the policy
function and the reward given z, y can be written as:

r(z, y) =

{
0, if f(z; ∆) 6= y.
1, if f(z; ∆) = y.

(15)

The learning objective is to maximize the expected reward
under current policy pθ:

R(x, y) = Ez∼pθ(z|x)) r(z, y) =
∑
z

pθ(z|x)r(z, y).

(16)Then the gradient for θ is:

∇θR(x, y) =
∑
z

r(z, y)pθ(z|x)∇θ log pθ(z|x)

= Ez∼pθ(z|x))[r(z, y)∇θ log pθ(z|x)]. (17)
We can approximate the expectation using one sample at
each time, and then we get the REINFORCE algorithm:

∇θ = r(z, y)∇θ log pθ(z|x), z ∼ pθ(z|x)

=

{
0, if f(z; ∆) 6= y.
∇θ log pθ(z|x), if f(z; ∆) = y.

(18)

Equation 18 reveals the gradient is non-zero only when
the sampled z satisfies f(z; ∆) = y. However, among the
whole space of z, only a very small portion can generate
the desired y, which implies that the REINFORCE will
get zero gradients from most of the samples. This is why
the REINFORCE method converges slowly or even fail to
converge, as also shown from the experiments in Section 4.

4. Experiments and Results
4.1. Handwritten Formula Recognition

4.1.1. EXPERIMENTAL SETUP

Task definition. The handwritten formula recognition task
tries to recognize each mathematical symbol given a raw
image of the handwritten formula. We learn this task in a
weakly-supervised manner, where raw image of the hand-
written formula is given as input data x, and the computed
results of the formulas is treated as outputs y. The symbolic

representation z that represent the ground-truth formula
composed by individual symbols is hidden. Our task is
to predict the formula, which could further be executed to
calculate the final result.

Synthetic Dataset. We generate our synthetic dataset based
on CROHME 2019 Offline Handwritten Formula Recogni-
tion Task1. First, we extract all symbols from CROHME
and only keep ten digits (0∼9) and four basic operators
(+,−,×, ÷). Then we generate formulas by sampling from
a pre-defined grammar. For each formula, we randomly
select symbol images from CROHME. Overall, our dataset
contains 10K training formulas and 2K test formulas.

Evaluation Metrics. We report both the calculation accu-
racy (i.e.whether the calculation of predicted formula yields
to the correct result) and the symbol recognition accuracy
(i.e.whether each symbol is recognized correctly from the
image) on the synthetic dataset.

Models. In this task, we use LeNet (LeCun et al., 2015b)
as the neural perception module and define a simple for-
mula grammar that only considers arithmetic operations
over single-digit numbers. The symbolic reasoning works
like a calculator, and each inference step computes the par-
ent value given the values of two child nodes (left/right)
and the operator. The solve(B,A, αA) function in 1-step
back-search algorithm works in the following way for math-
ematical formulas:

• IfB isA’s left or right child, we directly solve the equa-
tion αB

⊕
childR(A) = αA or childL(A)

⊕
αB =

αA to get αB , where
⊕

denotes the operator.

• If B is an operator node, we try all other operators
and check whether the new formula can generate the
correct result.

We conduct experiments by comparing the following vari-
ants of the proposed model:

• NGS-RL: learning the NGS model with REINFORCE.

• NGS-MAPO: learning the NGS model by Memory
Augmented Policy Optimization (MAPO) (Liang et al.,
2018), which leverages a memory buffer of reward-
ing samples to reduce the variance of policy gradient
estimates.

• NGS-RL-Pretrain: NGS-RL with LeNet pre-trained
on a small set of fully-supervised data.

• NGS-MAPO-Pretrain: NGS-MAPO with pre-trained
LeNet.

• NGS-m-BS: learning the NGS model with the pro-
posed m-step back-search algorithm.

1https://www.cs.rit.edu/˜crohme2019/task.html

https://www.cs.rit.edu/~crohme2019/task.html

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

Neural-Grammar-Symbolic

0k 20k 40k 60k 80k 100k
Iteration

0.0

0.2

0.4

0.6

0.8

1.0

T
ra

in
in

g
R
es

ul
t A

cc
ur

ac
y

NGS-m-BS
NGS-MAPO
NGS-MAPO-Pretrain
NGS-RL-Pretrain
NGS-RL

0k 20k 40k 60k 80k 100k
Iteration

0.2

0.4

0.6

0.8

1.0

T
ra

in
in
g
Sy

m
bo

l A
cc
ur

ac
y

NGS-m-BS
NGS-MAPO
NGS-MAPO-Pretrain
NGS-RL-Pretrain
NGS-RL

Figure 2. The learning curves of the calculation accuracy and the
symbol recognition accuracy for different models.

0 200 400 600 800 1000
Iteration

0.2

0.4

0.6

0.8

1.0

T
ra
in
in
g
Sy

m
bo

l A
cc
ur

ac
y

1-BS
5-BS
10-BS
60-BS

Figure 3. The training curves of NGS-m-BS with different steps.

4.1.2. RESULTS AND ANALYSES

Learning Curve. Figure 2 shows the learning curves of dif-
ferent models. The proposed NGS-m-BS converges much
faster and achieves higher accuracy compared with other
models. NGS-RL fails without pre-training and rarely im-
proves during the entire training process. NGS-MAPO can
learn the model without pre-training, but it takes a long time
to start efficient learning, which indicates that MAPO suffers
from the cold-start problem and needs time to accumulate
rewarding samples. Pre-training the LeNet solves the cold
start problem for NGS-RL and NGS-MAPO. However, the
training curves for these two models are quite noisy and are
hard to converge even after 100k iterations. Our NGS-m-BS
model learns from scratch and avoids the cold-start problem.
It converges quickly with nearly perfect accuracy, with a
much smoother training curve than the RL baselines.

Back-Search Step. Figure 3 illustrates the comparison of
the various number of steps in the multi-step back-search
algorithm. Generally, increasing the number of steps will
increase the chances of correcting wrong samples, thus
making the model converge faster. However, increasing
the number of steps will also increase the time consumption
of each iteration.

Data Efficiency. Table 1 and Table 2 show the accuracies
on the test set while using various percentage of training
data. All models are trained with 15K iterations. It turns
out the NGS-m-BS is much more data-efficient than the RL
methods. Specifically, when only using 25% of the training
data, NGS-m-BS can get a calculation accuracy of 93.3%,
while NGS-MAPO only gets 5.1%.

Table 1. The calculation accuracy on the test set using various
percentage of training data.

Model 25% 50 % 75 % 100%
NGS-RL 0.035 0.036 0.034 0.034
NGS-MAPO 0.051 0.095 0.305 0.717
NGS-RL-Pretrain 0.534 0.621 0.663 0.685
NGS-MAPO-Pretrain 0.687 0.773 0.893 0.956
NGS-m-BS 0.933 0.957 0.975 0.985

Table 2. The symbol recognition accuracy on the test set using
various percentage of training data.

Model 25% 50 % 75 % 100%
NGS-RL 0.170 0.170 0.170 0.170
NGS-MAPO 0.316 0.481 0.785 0.967
NGS-RL-Pretrain 0.916 0.945 0.959 0.964
NGS-MAPO-Pretrain 0.962 0.983 0.985 0.991
NGS-m-BS 0.988 0.992 0.995 0.997

Qualitative Results. Figure 4 illustrates four examples of
correcting the wrong predictions with 1-BS. In the first two
examples, the back-search algorithm successfully corrects
the wrong predictions by changing a digit and an operator,
respectively. In the third example, the back-search fails
to correct the wrong sample. However, if we increase the
number of search steps, the model could find a correction
for the example. In the fourth example, the back-search
finds a spurious correction, which is not the same as the
ground-truth formula but generates the same result. Such
spurious correction brings a noisy gradient to the neural
network update. It remains an open problem for how to
avoid similar spurious corrections.

Please refer to the supplementary material for more imple-
mentation details of the models and more qualitative results.

4.2. Neural-Symbolic Visual Question Answering

4.2.1. EXPERIMENTAL SETUP

Task. Following (Yi et al., 2018), the neural-symbolic visual
question answering task tries to parse the question into
functional program and then use a program executor that
runs the program on the structural scene representation to
obtain the answer. The functional program is hidden.

Dataset. We evaluate the proposed method on the CLEVR
dataset (Johnson et al., 2017a). The CLEVR dataset is a
popular benchmark for testing compositional reasoning ca-
pability of VQA models in previous works (Johnson et al.,
2017b; Vedantam et al., 2019). CLEVR consists of a train-
ing set of 70K images and ∼700K questions, and a valida-
tion set of 15K images and ∼150K questions. We use the

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

Neural-Grammar-Symbolic

Figure 4. Examples of correcting wrong predictions using the one-step back-search algorithm.

Table 3. The VQA accuracy on the CLEVR validation set using
different percentage of training data. All models are trained 30k
iterations.

Model 25% 50 % 75 % 100%
NS-RL 0.090 0.091 0.099 0.125
NGS-RL 0.678 0.839 0.905 0.969
NGS-m-BS 0.873 0.936 1.000 1.000

VQA accuracy as the evaluation metric.

We adopt the NS-VQA model in (Yi et al., 2018) and replace
the attention-based seq2seq question parser with a Pointer
Network (Vinyals et al., 2015). We store a dictionary to map
the keywords in each question to the corresponding func-
tional modules. For example, “red”→“filter color [red]”,
“how many”→ “count”, and “what size”→ “query size” etc.
Therefore, the Pointer Network can point to the functional
modules that are related to the input question. The grammar
model ensures that the generated sequence of function mod-
ules can form a valid program, which indicates the inputs
and outputs of these modules can be strictly matched with
their forms. We conduct experiments by comparing follow-
ing models: NS-RL, NGS-RL, NGS-1-BS, NGS-m-BS.

4.2.2. RESULTS AND ANALYSES

Learning Curve. Figure 5 shows the learning curves of
different model variants. NGS-BS converges much faster
and achieves higher VQA accuracy on the test set compared
with the RL baselines. Though taking a long time, NGS-RL
does converge, while NS-RL fails. This fact indicates that
the grammar model plays a critical role in this task. Con-
ceivably, the latent functional program space is combinatory,
but the grammar model rules out all invalid programs that
cannot be executed by the symbolic reasoning module. It
largely reduces the solution space in this task.

Back-Search Step. As shown in Figure 5, NGS-10-BS
performs slightly better than the NGS-1-BS, which indicates
that searching multiple steps does not help greatly in this
task. One possible reason is that there are more ambiguities
and more spurious examples compared with the handwritten
formula recognition task, making it less efficient to do the
m-BS. For example, for the answer “yes”, there might be

0k 5k 10k 15k 20k 25k 30k

0.2

0.4

0.6

0.8

1.0

A
cc
ur
ac
y

CLEVR training set

NS-RL
NGS-RL
NGS-1-BS
NGS-10-BS

0k 5k 10k 15k 20k 25k 30k
Number of iterations

0.2

0.4

0.6

0.8

1.0
A
cc
ur
ac
y

CLEVR validation set

NS-RL
NGS-RL
NGS-1-BS
NGS-10-BS

Figure 5. The learning curve of different model variants on training
and validation set of the CLEVR dataset.

many possible programs for this question that can generate
the same answer given the image.

Data Efficiency Table 3 shows the accuracies on the
CLEVR validation set when different portions of training
data are used. With less training data, the performances
decrease for both NGS-RL and NGS-m-BS, but NGS-m-BS
still consistently obtains higher accuracies.

Please refer to the supplementary material for more imple-
mentation details of the models and more qualitative results.

5. Conclusions
In this work, we propose a neural-grammar-symbolic model
and a back-search algorithm to close the loop of neural-
symbolic learning. We demonstrate that the grammar model
can dramatically reduce the solution space by eliminating
invalid possibilities in the latent representation space. The
back-search algorithm endows the NGS model with the
capability of learning from wrong samples, making the
learning more stable and efficient. One future direction is to
learn the symbolic prior (i.e.the grammar rules and symbolic
inference rules) automatically from the data.

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

Neural-Grammar-Symbolic

References
Agarwal, R., Liang, C., Schuurmans, D., and Norouzi, M. Learning

to generalize from sparse and underspecified rewards. arXiv
preprint arXiv:1902.07198, 2019.

Anderson, P., Wu, Q., Teney, D., Bruce, J., Johnson, M.,
Sünderhauf, N., Reid, I., Gould, S., and van den Hengel, A.
Vision-and-language navigation: Interpreting visually-grounded
navigation instructions in real environments. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recogni-
tion, pp. 3674–3683, 2018.

Andreas, J., Klein, D., and Levine, S. Modular multitask reinforce-
ment learning with policy sketches. In Proceedings of the 34th
International Conference on Machine Learning-Volume 70, pp.
166–175. JMLR. org, 2017.

Bader, S., Garcez, A. S. d., and Hitzler, P. Extracting propositional
rules from feed-forward neural networks by means of binary
decision diagrams. In Proceedings of the 5th International
Workshop on Neural-Symbolic Learning and Reasoning, NeSy,
volume 9, pp. 22–27. Citeseer, 2009.

Besold, T. R., Garcez, A. d., Bader, S., Bowman, H., Domingos, P.,
Hitzler, P., Kühnberger, K.-U., Lamb, L. C., Lowd, D., Lima, P.
M. V., et al. Neural-symbolic learning and reasoning: A survey
and interpretation. arXiv preprint arXiv:1711.03902, 2017.

Bunel, R., Hausknecht, M., Devlin, J., Singh, R., and Kohli, P.
Leveraging grammar and reinforcement learning for neural pro-
gram synthesis. arXiv preprint arXiv:1805.04276, 2018.

Calvo, P. and Symons, J. The architecture of cognition: Rethinking
Fodor and Pylyshyn’s systematicity challenge. MIT Press, 2014.

Das, A., Datta, S., Gkioxari, G., Lee, S., Parikh, D., and Batra,
D. Embodied question answering. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition Work-
shops, pp. 2054–2063, 2018a.

Das, A., Gkioxari, G., Lee, S., Parikh, D., and Batra, D. Neu-
ral modular control for embodied question answering. arXiv
preprint arXiv:1810.11181, 2018b.

Duane, S. and Kogut, J. B. The theory of hybrid stochastic algo-
rithms. Nuclear Physics B, 275(3):398–420, 1986.

Evans, R. and Grefenstette, E. Learning explanatory rules from
noisy data. Journal of Artificial Intelligence Research, 61:1–64,
2018.

Falkenhainer, B., Forbus, K. D., and Gentner, D. The structure-
mapping engine: Algorithm and examples. Artificial intelli-
gence, 41(1):1–63, 1989.

Fodor, J. A. and Lepore, E. The compositionality papers. Oxford
University Press, 2002.

Fodor, J. A., Pylyshyn, Z. W., et al. Connectionism and cognitive
architecture: A critical analysis. Cognition, 28(1-2):3–71, 1988.

Fried, D., Hu, R., Cirik, V., Rohrbach, A., Andreas, J., Morency,
L.-P., Berg-Kirkpatrick, T., Saenko, K., Klein, D., and Darrell,
T. Speaker-follower models for vision-and-language navigation.
In Advances in Neural Information Processing Systems, pp.
3314–3325, 2018.

Garcez, A. S., Lamb, L. C., and Gabbay, D. M. Neural-symbolic
cognitive reasoning. Springer Science & Business Media, 2008.

Graves, A., Mohamed, A.-r., and Hinton, G. Speech recognition
with deep recurrent neural networks. In 2013 IEEE interna-
tional conference on acoustics, speech and signal processing,
pp. 6645–6649. IEEE, 2013.

Gupta, A., Srinivasan, P., Shi, J., and Davis, L. S. Understanding
videos, constructing plots learning a visually grounded story-
line model from annotated videos. In 2009 IEEE Conference
on Computer Vision and Pattern Recognition, pp. 2012–2019.
IEEE, 2009.

Guu, K., Pasupat, P., Liu, E. Z., and Liang, P. From language
to programs: Bridging reinforcement learning and maximum
marginal likelihood. arXiv preprint arXiv:1704.07926, 2017.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learning for
image recognition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 770–778, 2016.

Hinton, G. E., Osindero, S., and Teh, Y.-W. A fast learning al-
gorithm for deep belief nets. Neural computation, 18(7):1527–
1554, 2006.

Hochreiter, S. and Schmidhuber, J. Long short-term memory.
Neural computation, 9(8):1735–1780, 1997.

Huang, S., Qi, S., Zhu, Y., Xiao, Y., Xu, Y., and Zhu, S.-C. Holistic
3d scene parsing and reconstruction from a single rgb image. In
Proceedings of the European Conference on Computer Vision
(ECCV), pp. 187–203, 2018.

Jiang, C., Qi, S., Zhu, Y., Huang, S., Lin, J., Yu, L.-F., Terzopoulos,
D., and Zhu, S.-C. Configurable 3d scene synthesis and 2d
image rendering with per-pixel ground truth using stochastic
grammars. International Journal of Computer Vision, 126(9):
920–941, 2018.

Johnson, J., Hariharan, B., van der Maaten, L., Fei-Fei, L.,
Lawrence Zitnick, C., and Girshick, R. Clevr: A diagnos-
tic dataset for compositional language and elementary visual
reasoning. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 2901–2910, 2017a.

Johnson, J., Hariharan, B., Van Der Maaten, L., Hoffman, J., Fei-
Fei, L., Lawrence Zitnick, C., and Girshick, R. Inferring and
executing programs for visual reasoning. In ICCV, 2017b.

Kalyan, A., Mohta, A., Polozov, O., Batra, D., Jain, P., and Gul-
wani, S. Neural-guided deductive search for real-time program
synthesis from examples. arXiv preprint arXiv:1804.01186,
2018.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. Imagenet classifi-
cation with deep convolutional neural networks. In Advances in
neural information processing systems, pp. 1097–1105, 2012.

Lake, B. M. and Baroni, M. Generalization without systematicity:
On the compositional skills of sequence-to-sequence recurrent
networks. In ICML, 2018.

Lample, G. and Charton, F. Deep learning for symbolic mathemat-
ics. arXiv preprint arXiv:1912.01412, 2019.

LeCun, Y., Bengio, Y., et al. Convolutional networks for images,
speech, and time series. The handbook of brain theory and
neural networks, 3361(10):1995, 1995.

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

Neural-Grammar-Symbolic

LeCun, Y., Bengio, Y., and Hinton, G. Deep learning. nature, 521
(7553):436–444, 2015a.

LeCun, Y. et al. Lenet-5, convolutional neural networks. URL:
http://yann. lecun. com/exdb/lenet, 20:5, 2015b.

Lee, D., Szegedy, C., Rabe, M. N., Loos, S. M., and Bansal,
K. Mathematical reasoning in latent space. arXiv preprint
arXiv:1909.11851, 2019.

Liang, C., Berant, J., Le, Q., Forbus, K. D., and Lao, N. Neural
symbolic machines: Learning semantic parsers on freebase with
weak supervision. arXiv preprint arXiv:1611.00020, 2016.

Liang, C., Norouzi, M., Berant, J., Le, Q. V., and Lao, N. Mem-
ory augmented policy optimization for program synthesis and
semantic parsing. In NeurIPS, 2018.

Manhaeve, R., Dumancic, S., Kimmig, A., Demeester, T., and
De Raedt, L. Deepproblog: Neural probabilistic logic program-
ming. In Advances in Neural Information Processing Systems,
pp. 3749–3759, 2018.

Mao, J., Gan, C., Kohli, P., Tenenbaum, J. B., and Wu, J.
The neuro-symbolic concept learner: Interpreting scenes,
words, and sentences from natural supervision. arXiv preprint
arXiv:1904.12584, 2019.

Marcus, G. F. Rethinking eliminative connectionism. Cognitive
psychology, 37(3):243–282, 1998.

Marcus, G. F. The algebraic mind: Integrating connectionism and
cognitive science. MIT press, 2018.

Mascharka, D., Tran, P., Soklaski, R., and Majumdar, A. Trans-
parency by design: Closing the gap between performance and
interpretability in visual reasoning. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pp.
4942–4950, 2018.

Qi, S., Jia, B., and Zhu, S.-C. Generalized earley parser: Bridging
symbolic grammars and sequence data for future prediction.
ICML, 2018.

Sun, R. Integrating rules and connectionism for robust common-
sense reasoning. John Wiley & Sons, Inc., 1994.

Sutskever, I., Vinyals, O., and Le, Q. V. Sequence to sequence
learning with neural networks. In Advances in neural informa-
tion processing systems, pp. 3104–3112, 2014.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D.,
Erhan, D., Vanhoucke, V., and Rabinovich, A. Going deeper
with convolutions. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 1–9, 2015.

Vedantam, R., Desai, K., Lee, S., Rohrbach, M., Batra, D.,
and Parikh, D. Probabilistic neural-symbolic models for
interpretable visual question answering. arXiv preprint
arXiv:1902.07864, 2019.

Vinyals, O., Fortunato, M., and Jaitly, N. Pointer networks. In
NIPS, 2015.

Wang, L., Zhang, D., Gao, L., Song, J., Guo, L., and Shen, H. T.
Mathdqn: Solving arithmetic word problems via deep reinforce-
ment learning. In Thirty-Second AAAI Conference on Artificial
Intelligence, 2018.

Welling, M. and Teh, Y. W. Bayesian learning via stochastic gradi-
ent langevin dynamics. In Proceedings of the 28th international
conference on machine learning (ICML-11), pp. 681–688, 2011.

Williams, R. J. Simple statistical gradient-following algorithms
for connectionist reinforcement learning. Machine learning, 8
(3-4):229–256, 1992.

Xie, X., Liu, H., Edmonds, M., Gao, F., Qi, S., Zhu, Y., Rothrock,
B., and Zhu, S.-C. Unsupervised learning of hierarchical models
for hand-object interactions. In ICRA, 2018.

Yang, Q., Chen, Y., Xue, G.-R., Dai, W., and Yu, Y. Heterogeneous
transfer learning for image clustering via the social web. In
Proceedings of the Joint Conference of the 47th Annual Meeting
of the ACL and the 4th international joint Conference on Natural
Language Processing of the AFNLP: Volume 1-Volume 1, pp.
1–9. Association for Computational Linguistics, 2009.

Yi, K., Wu, J., Gan, C., Torralba, A., Kohli, P., and Tenenbaum, J.
Neural-symbolic vqa: Disentangling reasoning from vision and
language understanding. In NeurIPS, 2018.

Yin, P., Zhou, C., He, J., and Neubig, G. Structvae: Tree-structured
latent variable models for semi-supervised semantic parsing.
arXiv preprint arXiv:1806.07832, 2018.

Zhao, Y. and Zhu, S.-C. Image parsing with stochastic scene gram-
mar. In Advances in Neural Information Processing Systems,
pp. 73–81, 2011.

