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Abstract
Siamese networks learn embeddings which im-
pose geometric constraints on the embedding
space and are used in the context of one-
/few-shot learning. In this paper, we empir-
ically investigate applying this framework to
Graph Convolutional Networks (GCNs). We test
whether some lightweight architectures yield per-
formance increases over plain Multi-Layer Per-
ceptrons (MLPs) in tasks of one-/few-shot learn-
ing for nodes. We show that, for our bench-
mark, good performance can be achieved even
with a fast Simplified Graph Convolutional Net-
work (SGCN).

1. Introduction
Graphs are a ubiquitous data structure with applications in
many fields. They allow the modeling of many systems
such as networks, geo-spatial data, and knowledge bases. In
many cases, vertices may have values attached to them. A
particular example is when the values are discrete and may
semantically correspond to a set of classes.

Graphs can grow over time due to additional data (eg. knowl-
edge graphs). Classes may have semantics associated to
them so labeling nodes can require expert knowledge. This
may be unfeasible for large graphs. Labeling can be auto-
mated through prediction with ML by leveraging informa-
tion about the topology and vertex data. A particular class of
deep learning models that do this are Graph Convolutional
Networks (GCNs) (Kipf & Welling, 2016a).

This paper focuses on a particular formulation of this classi-
fication task, the one-/few-shot learning task. Here, the set
of classes is only partially observed during training, and the
inference on new classes is based on one or a few support
examples from them. For graphs, this problem can appear in
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the context of knowledge graphs where the number of types
of relationships is ever-growing. Other problem-specific
applications may exist as well.

We naively adapt the training regimen used by Siamese
networks to GCNs. We propose some architectures and
perform an initial step of model selection. We test our best
model’s few-shot accuracy against a simple Siamese MLP
baseline and showcase the results. We show that better-
than-MLP performance can be achieved even with a simple
and computationally-fast Simplified Graph Convolutional
Network (SGCN) architecture.

In Section 2 we review existing literature in the field of
GCNs and few-shot learning. In Section 3 we describe our
models and training procedure and put them in the context
of existing methods. Section 4 presents our model-selection
analysis, while Section 5 outlines the experimental design
for testing few-shot accuracy against an MLP baseline. The
numerical results of the experiments are presented in Sec-
tion 6.

2. Related work
GCNs have been proposed in the context of node/graph
embedding/learning (Kipf & Welling, 2016a;b; Hamilton
et al., 2017). They improve upon the performance of pre-
vious deep learning methods such as the recurrent (Gori
et al., 2005) or walk-based (Perozzi et al., 2014) approaches.
Since then, numerous improvements to the architecture have
been published (Wu et al., 2020).

Although not formally introduced as such, one-/few-shot
learning dates back to the 90s when Siamese networks were
proposed for signature recognition (Bromley et al., 1994;
Wang et al., 2019). More recently, few-shot learning has
become popular for tasks where retraining is impractical.
One such task is facial recognition (Schroff et al., 2015).

In the last few years, GCNs have been used for Knowledge
Graphs through contrastive learning (Xiong et al., 2018;
Saebi et al., 2020; Dettmers et al., 2018). These applications
usually involve using GCNs in conjunction with matching
networks (Vinyals et al., 2016) for the task of link prediction.
These methods are similar to the contrastive training we use.
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3. Method
The goal of this section is to outline both the architecture
and the training method we propose for learning node em-
beddings. We define two sets of experiments:

• Compare the performance of different architectures in
terms of loss (Section 4);

• Test the performance of our best model in terms of
one-/few-shot accuracy (Section 5).

3.1. Losses

The general framework we use for training is the Siamese
network framework (Bromley et al., 1994). In this frame-
work, a network G is used to generate embeddings from the
feature vector xi of every sample i. Given prior knowledge
of the classes yi, this network is trained with an objective
that seeks to impose a distance (L1 or L2) constraints on the
embeddings. We explore the performance of two loss types:
triplet loss (Chopra et al., 2005) and a modified version of
it called margin loss (Wu et al., 2017).

• Triplet loss (Chopra et al., 2005) is an improvement
over contrastive loss (Bromley et al., 1994). We de-
fine a training triplet as the triplet (xi, xj , xk) with the
property that yi = yj and yi 6= yk. The elements of
the triplet are called anchor, positive and negative.

TripletLoss(a, p, n) =[
‖G(a)−G(p)‖22 − ‖G(a)−G(n)‖

2
2 + α

]
+

(1)

Here, α acts as a hard margin between the positive
and negative distances, relaxing the constraint of the
contrastive loss. Minimizing this loss ensures that all
positive points of an anchor are closer by at least α
than the negative ones. This loss, unlike the contrastive
loss (Bromley et al., 1994), does not cause positive
examples to collapse into single points.

• Margin loss was introduced in (Wu et al., 2017) as an
extension to triplet loss and it introduces a learnable
margin parameter β0 and individual learnable margins
for each sample and each of the classes. This way α
no longer acts as a hard margin between the distances
because it can be offset by βi,

βi = β0 + βi
(sample) + βyi

(class). (2)

MarginLoss(xi, p, n) =[
α+ ‖G(xi)−G(p)‖22 − βi

]
+
+[

α− ‖G(xi)−G(n)‖22 + βi

]
+

(3)

The β parameters are then optimized alternatively with
the parameters of the embedding function (network).

3.2. Few-Shot Learning

In a few-shot classification task (Koch et al., 2015), the
dataset is split into a training and a test set of samples
(Xtrain, Ytrain) and (Xtest, Ytest) with disjoint sets of
classes: for all y ∈ Ytrain and y′ ∈ Ytest, y 6= y′. For
all classes c ∈ Ytest we also build a support set:

Sc = {X(i)
c }Ki=1, where Y (X(i)

c ) = c and X(i)
c ∈ Xtest

(4)

We call this set the K-shot support set of class c. Given a
sample x ∈ Xtest, we can predict its class y∗ w.r.t. our em-
bedding function GΘ, by finding the class whose supports
are closest in the embedding space:

y∗ = argmin
c

1

K

∑
xs∈Sc

‖GΘ(x)−GΘ(xs)‖22 (5)

Based on these predictions and the size of the support
set (K), we compute the K-shot accuracy of our models.

3.3. Architecture

GCNs are a class of models for representational learning
applied to graphs and their nodes (Hamilton et al., 2017;
Wu et al., 2020). For each node of a graph G = (V,E)
with feature vectors {xv | v ∈ V }, the algorithm consists of
applying an arbitrary function f (usually a linear transforma-
tion with a non-linearity afterward) to get some intermediate
values hv for each node. These values are aggregated using
a differentiable function (such as mean or sum) over each
node’s neighborhood 2v to get the embeddings zv. This
process can be repeated several times to include informa-
tion from nodes at distances greater than 1. The resulting
embeddings can be trained end-to-end with an objective
function.

The first graph convolutional model we tested is the GCN
proposed by Kipf & Welling (2016a) where each linear
transformation is followed by a non-linearity. We use
LeakyReLU and sigmoid as opposed to tanh because we
noticed slightly faster convergence during training. We refer
to this model as lgcn.

The other GCN architecture we test is the Simplified Graph
Convolutional Networks (SGNC) (Wu et al., 2019). It ap-
plies the non-linearity after the final convolution and ap-
plies the same size-preserving linear transformation for
each step of convolution. This means all transformations
before the non-linearity can be written as matrix multiplica-
tions/powers. Therefore, this is a very lightweight model.
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As for the MLP architecture, we use a fully connected net-
work with ReLU as an activation function for the hidden
layers and sigmoid for the last layer. The sizes of the lay-
ers decrease linearly from the number of input features to
the number of classes used. To reduce overfitting, we use
dropout after each layer with a probability of 0.5.

3.4. Sampling

Inspired by Wu et al. (2017) and Schroff et al. (2015), we
also experiment with different sampling strategies for our
triplets. The authors claim performance and stability in-
crease through using what they call semi-hard sampling and
distance-weighted sampling. As a baseline, we also sample
triplets uniformly.

Semi-hard sampling was introduced by Schroff et al.
(2015) and consists of selecting only relatively diffi-
cult triplets from a batch of samples. Within a batch,
hard-positive pairs are defined as (xa, xp) where p =

argmaxp‖G(xa)−G(xp)‖
2
2 and ya = yp and similarly

hard-negative pairs are those pairs (xa, xn) where ya 6= yn
and n = argminn‖G(xa)−G(xn)‖

2
2.

The authors experimented with both hard-negative and
hard-positive mining. They propose selecting those triplets
(xa, xp, xn) which satisfy the following constraint:

n = argmin
n
‖G(xa)−G(xn)‖22 (6)

where:

‖G(xa)−G(xp)‖22 ≤ ‖G(xa)−G(xn)‖
2
2 (7)

Another method is proposed by Wu et al. (2017), citing that
uniform and semi-hard sampling provide a biased sample of
distances as training progresses. As a result, they propose
a method of sampling triplets where the distance between
samples in a batch are L1-normalized, projecting the embed-
dings on the unit sphere. Given an anchor a, the negatives
of a are sampled with the following probability:

P (n) = q
(
‖z′a − z′n‖

2
2

)−1

(8)

Here, q is the probability density function of distances of
two different points on the sphere and z′a and z′n are the
L1-normalized values of G(xa) and G(xn).

3.5. Learning Rate

Initial experiments with our models showed poor conver-
gence when optimizing the network with an Adam (Kingma
& Ba, 2014) optimizer and learning rates (LR) in the
(10−4, 10−2) interval. To find some values which yielded

better convergence, we tried using an SGD optimizer and
used the LR range test proposed by Smith (2017). Using
this method, we saw learning rates between 0.1 and 1 offer
the best optimization for our models. Lower or larger values
lead to poor convergence.

Hand tuning also showed that using cyclical learning
rates (Smith, 2017) led to better results in most cases. For
our experiments, we initially tested using the cosine an-
nealing proposed for the Stochastic Gradient Descent with
Restarts (SGDR) (Loshchilov & Hutter, 2016). However,
due to its simplicity and alleged performance, we opted for
the 1cycle policy proposed by Smith & Topin (2017); Smith
(2018).

4. Model Selection
We propose an experiment to compare our GCN models.
The evaluation metric we use is the triplet loss. To have
statistically-sound results, for each combination of models
and hyperparameters, we run on 30 different 70%/15%/15%
splits for 1000 epochs. We compute the 95% confidence in-
tervals over all the runs. We use the CORA dataset (London
& Getoor, 2014).

Initially, the models exhibited high sensibility to the LR,
resulting in poor convergence. Thus, for every combination
of parameters, we perform an initial step of LR tuning.
Using an arbitrary split, we perform the LR range test to
find the maximum LR for which the model is still stable. As
recommended by Smith (2017), we set the minimum LR to
LRmax/4.

As we can see from Figure 1, in terms of triplet loss, LCGNs
and SGCNs have similar performance, and both provide a
significant performance increase over MLPs.

5. Experiments
For the few-shot learning experiments, we need a dataset
with a significant number of classes. The CORA dataset
was not satisfactory so we used a preprocessed version of
the NELL dataset (Yang et al., 2016; Carlson et al., 2010).
Unlike CORA, which has 7 classes, NELL has 210, making
it an ideal candidate for few-shot learning (Xiong et al.,
2018).

For the experimental setup, a 70%/15%/15% split is per-
formed on the dataset. In the few-shot learning task. This
means splitting the dataset into disjoint sets of 148/31/31
classes. The NELL dataset is much larger then CORA and
didn’t fit into our GPU memory forcing us to run the model
on the CPU. Therefore, we used only 4 different splits on
runs of 300 epochs each.

Based on the results from the model selection experiment,
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Figure 1. Results of the model selection experiment. Average triplet loss on the CORA dataset over 30 runs for every combination of:
sampling method, model, and the number of layers. The error bars represent the 95% confidence interval for the values. lgcn refers to
our modified vanilla GCN with LeakyReLU and sigmoid.

1-shot @
top-1

1-shot @
top-5

5-shot @
top-1

5-shot @
top-5

mlp-1 0.49± 0.24 0.80± 0.25 0.62± 0.23 0.91± 0.06
mlp-2 0.52± 0.24 0.84± 0.19 0.63± 0.20 0.93 ± 0.04
mlp-3 0.44± 0.25 0.79± 0.22 0.52± 0.20 0.90± 0.07
sgcn-1 0.43± 0.17 0.81± 0.20 0.58± 0.17 0.90± 0.09
sgcn-2 0.54± 0.12 0.91 ± 0.05 0.70 ± 0.18 0.93± 0.10
sgcn-3 0.55 ± 0.12 0.91± 0.07 0.69± 0.17 0.93± 0.10

Table 1. One-/few-shot accuracy on for different models on the NELL dataset. The number in the model’s name indicates the number of
hidden layers for the MLP models and the number of convolutions for the SGCN. Top-K accuracy in both one- and few-shot tasks is
shown. The results are given with a 95% confidence interval for 4 runs.

we choose SGCNs over LGCNs as they are computationally-
cheaper. Triplet sampling is uniform, as neither semi-hard
nor distance-weighted sampling yielded a compelling per-
formance increase to justify their involved implementations.

6. Results
In table 1 we provide the results of the experiment. We
present performance in terms of 1 and 5-shot accuracy both
as top-1 and top-5. What we can immediately see is that,
for all metrics, both sgcn-2 and sgcn-3 have better or
similar results when compared to the MLP (linear) models
with increases as large as 7% in accuracy. Moreover, their
results are more consistent, with tighter intervals.

We can also see that sgn-1 is the worst performing model.
This is probably due to the the fact that it behaves exactly
like the mlp-1 model, except it lacks dropout. However
we can see that simply adding information even from the
first order neighbours, is more than enough to compensate
for simplicity of the model, as, in all cases except for 5-shot
@ top-5, sgcn-2 and sgnc-3 outperform all the mlp

baselines.

Although not shown in table 1, the SGCN implementation
used was also significantly faster than the MLP.

7. Conclusion
We have shown that GCNs have the potential to be used
in one-/few-shot learning tasks on nodes with significant
performance increases over naive MLP baselines. SGCNs
yield accuracy increases of almost 7% over MLPs in some
cases even with fast uniform sampling.
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