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Towards Practical Multi-Object Manipulation using Relational Reinforcement
Learning

Anonymous Authors1

We present a reinforcement learning system that can stack 6 blocks without requiring any demonstrations or task-specific
assumptions. The last two rows show zero-shot generalization results of configuring blocks into unseen configurations of
multiple towers and pyramids without additional training. See the videos here:
https://richardrl.github.io/relational-rl.

Abstract
Learning robotic manipulation tasks using rein-
forcement learning with sparse rewards is cur-
rently impractical due to the outrageous data re-
quirements. Many practical tasks require manipu-
lation of multiple objects, and the complexity of
such tasks increases with the number of objects.
Learning from a curriculum of increasing object
cardinality appears to be a natural solution, but
unfortunately, does not work for many scenarios.
We show that a graph-based relational architecture
enables learning from this curriculum, and demon-
strate our method on a simulated block stacking
task. Despite using step-wise sparse rewards, our
method is orders of magnitude more data-efficient
and achieves much higher success rate than the ex-
isting state-of-the-art method that utilizes human
demonstrations. Furthermore, the learned pol-

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.
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icy exhibits zero-shot generalization, successfully
stacking blocks into taller towers and previously
unseen configurations such as pyramids, without
any further training.

1. Introduction
Sparse reward, which may be provided either after the agent
completes the overall task (terminal reward) or intermit-
tently when the agent completes critical steps (step-wise
rewards), significantly simplifies reward design in reinforce-
ment learning. However, because many tasks require exe-
cution of a long sequence of actions, sparse rewards dras-
tically complicate the challenges of exploration and credit-
assignment. Training with sparse rewards, therefore, either
completely fails or requires massive amounts of data.

In this work, we utilize a curriculum over object cardinality
to overcome the sparse reward problem. We show that
training a policy represented by an attention-based graph
neural network (GNN) enables transfer between tasks in this
curriculum. Our agent learns to stack six or more blocks
from scratch (see Figure ). To the best of our knowledge,
ours is the first work to solve the problem of stacking six

https://richardrl.github.io/relational-rl
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or more blocks using RL and without requiring any expert
demonstrations. Our method is orders of magnitude more
efficient than the previous state-of-the-art method relying
on human-provided demonstrations (Nair et al., 2017).

Our system can build towers that are taller than that expe-
rienced at training time. It also succeeds at placing blocks
in different configurations such as pyramids without any
additional training (i.e., zero-shot generalization). While
we present results on the task of stacking blocks in various
arrangements, the approach developed in this work does not
make any task-specific assumption and is therefore appli-
cable to a wide range of tasks involving manipulation of
multiple objects.

2. Related Work
Our work is broadly related to techniques for scaling re-
inforcement learning algorithms to more complex robotic
manipulation settings, as well as the use of relational and
curricular inductive biases in machine learning.

Relational Inductive Bias: Related to our work is past
research combining GNNs with policy learning for manip-
ulation tasks. However, these works either rely on tens or
hundreds of thousands of expert demonstrations (Duan et al.,
2017b; Janner et al., 2019) or simplify the task by teleport-
ing objects around in the simulator instead of actuating a
manipulator (Janner et al., 2019).

Block Stacking: Prior work on block stacking either heav-
ily relied on human demonstrations (Nair et al., 2017;
Duan et al., 2017a), or required significant reward engi-
neering (Popov et al., 2018). The work of (Deisenroth et al.,
2011) stacked blocks using a low-cost robot. However, they
assumed the blocks were already picked and used a dense
reward function. Other lines of work (Kroemer et al., 2018;
Toussaint, 2015) achieved impressive results on stacking
objects, but relied on human-designed representations. In
contrast, we present a simple but effective method for stack-
ing blocks using RL that makes minimal assumptions about
task structure or the environment.

3. Experimental Setup
Our environment consists of a robot arm manipulating a
variable number of cubic blocks on a table. The agent ob-
serves gripper state features (including gripper velocity and
position) and block state features (including block position
and velocity) for each of N blocks. The block features are
denoted by Xf : xf1 , x

f
2 , ..x

f
N , where N ∈ [1, 9] and xfi

is the feature representation of the ith block. The goal is
expressed as set of 3D block positions, Xg : xg1, x

g
2, ..x

g
N .

The overall input to the agent is therefore {Xee, Xf , Xg}.
At the start of every episode, the initial block positions are

randomly initialized on the table and the goal positions are
sampled using a hand-designed goal distribution. The maxi-
mum length of every episode is 50 ∗N steps, where N is
the number of blocks.

4. Preliminaries
4.1. Goal-Conditioned RL

While the above formulation is appropriate for a single
goal, for solving multiple tasks, it is necessary to provide a
task description as input (Schaul et al., 2015; Agrawal et al.,
2016; Andrychowicz et al., 2017). Goal conditioned policies
are expressed as at = π(st, sg), where sg represents the
goal state. The learning problem is expressed as:

max
π

Esg∼ρ(sg),a∼π,s∼T [
T∑
i=t

γ(t−i)r(st, at, sg)] (1)

where goal sg is sampled from a goal distribution ρ(sg).

4.2. Graph Neural Networks (GNN)

The central computation in a GNN is message passing be-
tween 1-hop vertices of a graph, performed by a graph-
to-graph module. This module takes as input a variable-
size vertex set v = {~vi}Nv

i=1 and outputs an updated set
v′ = {~v′i}

Nv
i=1, where Nv is the number of vertices in the

input graph.~vi,~v′i denote feature vectors of the ith node be-
fore and after a round of message passing. In each message
passing round, each vertex sends a message to every other
vertex. In attention-based GNNs, the incoming messages
are weighted by a scalar coefficient (computed by attention)
according to their relevance to the receiving vertex. The
new feature representation of the vertex is the weighted
sum of incoming messages. Message passing is typically
performed multiple times.

5. Method
We present a simple, but effective method combining cur-
riculum with a grpah neural network architecture for solving
long-horizon, sparse reward tasks using reinforcement learn-
ing. We use Soft-Actor Critic (SAC; (Haarnoja et al., 2018))
and Hindsight Experience Replay (Andrychowicz et al.,
2017) as our base learning algorithm.

We construct an attention-based GNN architecture for our
actor and critic called ReNN1. We compare the performance
of ReNN against the baseline system that uses a multilayer
perceptron (MLP) architecture.

Training Curriculum: We trained the robot to stack mul-
tiple blocks using three different curricula of tasks:

1See Appendix A.1.
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Figure 1. Comparing task performance measured as the mean num-
ber of blocks stacked per timestep during training. We report the
mean and standard deviation across multiple workers and/or seeds.
The performance of relational (ReNN) and the usual multi-layer
(MLP) architectures are reported when they are subjected to dif-
ferent training curricula described in Section 5. Both ReNN and
MLP fail to stack blocks, when the robot was directly trained for
stacking 6 blocks (MLP −Direct, ReNN −Direct). Only ReNN
trained with sequential curriculum (ReNN−Sequential) succeeds
at stacking six blocks.

• Direct: The robot was directly tasked to learn a policy
to stack six blocks starting from scratch.

• Uniform: At every episode, the number of blocks was
uniformly sampled between 1 and 6.

• Sequential: The robot was tasked to pick and place
one block, then to pick and place two blocks. There-
after, the robot was tasked with stacking blocks in a
single tower configuration from 2 to 6 blocks. The tran-
sition points in this curriculum were manually chosen
based on the success rates on stacking.

5.1. Testing Details

We evaluated the generalization of the policy trained for
stacking a single tower by evaluating its performance on the
following tests2:

• Single Tower: A single point was uniformly sampled
on the table to serve as the base of a block tower. The
goal positions of the blocks corresponded to translation
along the z-axis from the base.

2See Appendix for visualizations of the different goal configu-
rations.

• Multiple Towers: A few points (k ∈ {2, 3}) were
sampled on the table to serve as the base location of
multiple towers. Each block was randomly assigned
to a tower to produce towers of approximately equal
height.

• Pyramid: A uniformly sampled point on the table
served as a corner point for pyramid configuration.

We report performance of ReNN- Sequential (referred to as
ReNN in later text) across three seeds. For other methods
we report performance on a single seed. Success rate is
reported as accuracy of completing a task averaged over 100
episodes. An episode is counted as successful when each
block is within its goal position at the final time step.

6. Results

Table 1. Comparing the performance of our method against the
previous state-of-the art (Nair et al., 2017) that makes use of human
demonstrations on the block stacking task. Each entry, p% (s),
denotes accuracy of p% after s number of environment steps. Our
method is both more sample efficient and outperforms prior work.

Task Single Tower 4 Single Tower 5 Single Tower 6
Nair ’17 91% (850M) 50% (1000M) 32% (2300M)

Ours 93%(23M) 84% (27M) 75% (30M)

Figure 1 shows that ReNN trained with the sequential cur-
riculum (green line; section 5) succeeds at stacking six
blocks into a tower. All other combinations of task distribu-
tion and architecture fail.

We report quantitative performance of our method and base-
lines in Table 1. Our method achieves a success rate of 75%
at stacking 6 blocks in 30 million timesteps. In compari-
son, the existing state-of-art method (Nair et al., 2017), that
makes use of human demonstrations and resets, achieves
only a success rate of 32% after over 2.3 billion timesteps.
While the base learning algorithm used by (Nair et al., 2017)
is DDPG + HER, in comparison to SAC + HER used by us,
the orders of magnitude difference in performance cannot
be attributed to the choice of using SAC instead of DDPG,
as shown by our ablation illustrating the importance of se-
quential curriculum.

Careful analysis of Figure 1 reveals that there are several
dips in performance as the training progresses. Many of
the significant dips correspond to a task change where an
additional block is added to the environment. In most cases,
the dip in performance is overcome after relatively little
additional experience. The only notable exception is the
performance dip at 9M steps that corresponds to transition-
ing from 1 to 2 blocks. This was the first time the agent
observed multiple objects.
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Figure 2. Quantitative evaluation of zero-shot generalization results of policies trained to stack i blocks in a single tower. These policies
were evaluated, without any further training, on (a) single (but taller) tower (shown in shades of red); (b) multiple towers; (c) pyramid
configurations. Details of these testing setups can be found in Section 5.1. The results show that robot is capable of zero-shot generalization
to many of these tasks.

6.1. Zero-shot Generalization

If our ReNN architecture indeed provides a good induc-
tive bias, then it should be possible solve different block
configuration tasks with high-accuracy. To test this, we
evaluated the performance of the learned policy, without
any fine-tuning, on previously unseen block configurations
(i.e. zero-shot generalization) described in Section 5.1. The
results of this analysis are summarized in Figure 2.

Single Tower Evaluation: Figure 2 shows that a policy
learned to stack N blocks generalizes to stacking N + 1
blocks without any training. The performance on stacking
N + k blocks, where k > 1 drops significantly. One possi-
ble explanation is that it becomes progressively harder to
stabilize larger number of blocks in a tower and the robot
needs to substantially refine its strategy to stack more blocks.
An analysis of failure modes is presented in Appendix B.

Multiple Towers Evaluation: The previous experiments
tested generalization to a larger number of blocks, but on the
same task. To test if the learned policy generalizes to new
tasks, we evaluated the performance on stacking multiple
towers instead of a single tower. Results in Figure 2(b)
show that the agent trained for stacking a single tower of N
blocks can successfully stack multiple towers N + k blocks.
Generalization to k ≥ 2 is better on the multiple towers
task as compared to the single tower task. This suggest that
ReNN generalizing over the total number of objects is easier
than generalizing over the height of the tallest tower.

Pyramid Evaluation: To stress test our system further, we
evaluated its performance on placing blocks in a pyramid
configuration. Stacking blocks in pyramid is different than a
tower, because now blocks may need to be balanced on two
supporting blocks instead of only being stacked vertically.
Figure 2(c) shows that our system is able to generalize and
manipulate larger number of blocks than seen in training
into pyramid configurations.

Emergent Strategies: The accompanying videos3 show
that our agent automatically learns to singulate individual
blocks, roll blocks, grasps two blocks at a time, and other
complex behaviors. These strategies emerge automatically
as a consequence of optimizing a sparse reward function.

To the best of our knowledge, ours is the first work that
reports such zero-shot generalization on the block stacking
task using RL. At the same time, we acknowledge, there is
substantial room for improving the zero-shot results and the
stacking performance. Some future directions are described
in Section 7.

7. Discussion
We have presented a framework for learning long-horizon,
sparse reward tasks using deep reinforcement learning, re-
lational graph architecture and curriculum learning. In the
current work, the curriculum is manually-designed based
on the principle that smaller sets of objects are easier to
learn to manipulate than larger sets of objects. However,
more complicated and effective curricula could exist beyond
just the object cardinality, and discovering these curricula
automatically is an interesting direction for future research.
Developing computationally efficient methods is important
to scale relational graph architectures (which have quadratic
runtime in object cardinality) to much larger numbers of
objects. Finally, while we have presented results from state
observation, in the future we would like to scale our system
to work from visual and other sensory observations.
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