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Abstract
Building models for realistic natural language
tasks requires dealing with long texts and ac-
counting for complicated structural dependencies.
Neural-symbolic representations have emerged
as a way to combine the reasoning capabilities
of symbolic methods, with the expressiveness of
neural networks. In this paper, we present DRAIL
a declarative framework for specifying deep re-
lational models, designed to support a variety of
NLP scenarios. Our framework supports easy in-
tegration with expressive language encoders, and
provides an interface to study the interactions be-
tween representation, inference and learning.

1. Introduction
Understanding natural language interactions in realistic set-
tings requires models that can deal with noisy textual inputs,
reason about the dependencies between different textual
elements and leverage the dependencies between textual
content and the context from which it emerges. We propose
a neural-symbolic approach that allows us to introduce do-
main knowledge, constrain the learning problem, and use
expressive neural models better equipped to deal with text.

As a motivating example, consider the interactions in
the debate network described in Fig. 1. Given a debate
claim (t1), and two consecutive posts debating it (p1, p2),
we define a textual inference task, determining whether
a pair of text elements hold the same stance in the de-
bate (Agree(X, Y)). This task is similar to other textual
inference tasks (Bowman et al., 2015) which have been
successfully approached using complex neural represen-
tations (Peters et al., 2018; Devlin et al., 2019). Ex-
ploiting the dependency between these decisions can be
done using symbolic probabilistic inference. For exam-
ple, assuming that one post agrees with the debate claim
Agree(t1, p2), and the other one does not ¬Agree(t1, p1),
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the disagreement between the two posts can be inferred:
¬Agree(t1, p1) ∧ Agree(t1, p2)→ ¬Agree(p1, p2). Finally,
we consider the social context of the text. The disagreement
between the posts can reflect a difference in the perspectives
their authors hold on the issue.

Motivated by these challenges, we introduce DRAIL1, a
Deep Relational Learning framework, which uses a com-
bined neuro-symbolic representation for modeling the in-
teraction between multiple decisions in relational domains.
Our main design goal in DRAIL is to provide a general-
ized tool, specifically designed for NLP tasks. Existing ap-
proaches designed for classic relational learning tasks (Co-
hen et al., 2020), such as knowledge graph completion,
are not equipped to deal with the complex linguistic in-
put. While others deal with very specific NLP settings such
as word-based quantitative reasoning problems (Manhaeve
et al., 2018) or aligning images with text (Mao et al., 2019).
While the example in this paper focuses on modelings ar-
gumentation and its social and political context, the same
principles can be applied to wide array of NLP tasks with
different contextualizing information, such as images that
appear next to the text, or prosody when analyzing tran-
scribed speech, to name a few examples.

DRAIL uses a declarative language for defining deep
relational models. Similar to other declarative lan-
guages (Richardson & Domingos, 2006; Bach et al., 2017),
it allows users to inject their knowledge by specifying de-
pendencies between decisions using first-order logic rules,
which are later compiled into a factor graph with neural
potentials. In addition to probabilistic inference, DRAIL
also models dependencies using a distributed knowledge
representation, denoted RELNETS, which provides a shared
representation space for entities and their relations, trained
using a relational multi-task learning approach. This pro-
vides a mechanism for explaining symbols, and aligning
representations from different modalities. Following our
running example, ideological standpoints, such as Liberal
or Conservative, are discrete entities embedded in the
same space as textual entities and social entities. These
entities are initially associated with users, however using
RELNETS this information will propagate to texts reflect-
ing these ideologies, by exploiting the relations that bridge

1System and code will be released to the community
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Figure 1: Example debate
Figure 2: General DRAIL overview

social and linguistic information (see Fig. 1).

To demonstrate DRAIL’s modeling approach, we introduce
the task of open-domain stance prediction with social con-
text2, which combines social networks analysis and textual
inference over complex opinionated texts

2. DRAIL Overview
DRAIL was designed for supporting complex NLP tasks.
Problems can be broken down into domain-specific atomic
components (which could be words, sentences, paragraphs
or full documents, depending on the task), and dependencies
between them, their properties and contextualizing infor-
mation about them can be explicitly modeled. In DRAIL
dependencies can be modeled over the predicted output vari-
ables (similar to other probabilistic graphical models), as
well as over the neural representation of the atoms and their
relationships in a shared embedding space.

A DRAIL task is defined by specifying a finite set of enti-
ties and relations. Entities are either discrete symbols (e.g.,
an ideology or issue stances), or attributed elements with
complex internal information (e.g., documents, users). De-
cisions are defined using rule templates, formatted as horn
clauses: tLH ⇒ tRH , where tLH (body) is a conjunction of
observed and predicted predicates, and tRH (head) is the
output predicate to be learned. Consider the debate predic-
tion task in Fig. 1, it consists of several sub-tasks, involving
textual inference, social relations and their combination.

Each rule template is associated with a neural architecture
and a feature function, mapping the initial observations to
an input vector for each neural net. We use a shared rela-
tional embedding space, denoted RELNETS, to represent
entities and relations over them. As described in Fig. 2
(“Shared Layer”), each entity and relation type is associated
with an encoder, trained jointly across all prediction rules.
This is a form of relational multi-task learning, as the same

2Annotated dataset will be released to the community

entities and relations are reused in multiple rules and their
representation is updated accordingly. Each rule defines a
neural net, learned over the relations defined on their LHS.
They they take a composition of the vectors generated by
the relations encoders as an input (Fig. 2, “Rule Layer”).
DRAIL is architecture-agnostic, and neural modules for
entities, relations and rules can be specified using Pytorch.

The relations in the horn clauses can correspond to hidden
or observed information, and a specific input is defined by
the instantiations -or groundings- of these elements. The
collection of all rule groundings results in a factor graph
representing our global decision, taking into account the
consistency and dependencies between the rules. This way,
the final assignments can be obtained by performing MAP
inference. For example, the dependency between the users’
views on the debate topic (Agree(u, t)) and agreement be-
tween them on the topic (VoteFor(u, v)), is modeled as a
factor graph in Fig. 2 (“Structured Inference Layer”)).

2.1. RELNETS

Our goal when using RELNETS is to learn entity represen-
tations that capture properties unique to their types (e.g.
users, issues), as well as relational patterns that contextual-
ize entities, allowing them to generalize better. We make the
distinction between raw (or attributed) entities and symbolic
entities. Raw entities are associated with rich, yet unstruc-
tured information and attributes, such as text or user profiles.
On the other hand, symbolic entities are well defined con-
cepts, and are not associated with additional information,
such as political ideologies (e.g. liberal) and issues (e.g.
gun-control). With this consideration, we identify two types
of representation learning objectives:

Embed Symbol / Explain Data: aligns the embedding of
symbolic entities and raw entities, grounding the symbol in
the raw data, and using the symbol embedding to explain
properties of previously unseen raw-entity instances. For
example, learning an ideology embedding that is closest to
the statements made by people with that ideology.
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t0: InThread(T, P) ∧ Claim(T, C) ⇒ Agree(P, C)
t1: Debates(T, U) ∧ Claim(T, C) ⇒ Agree(U, C)
t2: Debates(T, U) ∧ Votes(T, V) ⇒ VoteFor(V, U)

t3: InThread(T, P1) ⇒ HasIdeology(P1, I)
t4: Claim(T, C) ⇒ HasIdeology(C, I)
t5: Debates(T, U) ⇒ HasIdeology(U, I)

c0: Agree(P, C) ∧ Author(P, U) ⇒ Agree(U, C)
c1: Agree(P1, C) ∧ Respond(P1, P2) ⇒ ¬Agree(P2, C)
c2: Agree(P, C) ∧ VoteFor(V, P) ⇒ Agree(V, C)
c3: HasIdeology(C, I) ∧ HasIdeology(U, I)

⇒ Agree(U, C)

Table 1: DRAIL Program for Open Domain.
*Negated, converse and VoteSame rules omitted to save space

Model Random Hard

P U V P U V

Local INDNETS 63.9 61.3 54.4 62.2 53.0 51.3
E2E 66.3 71.2 54.4 63.4 68.1 51.3

Reln. TransE 58.5 54.1 52.6 57.2 53.1 51.2
Emb. ComplEx 61.0 63.3 58.1 57.3 55.0 55.4

RotatE 59.6 58.3 54.2 57.9 54.6 51.0

Prob. PSL 78.7 77.5 55.4 72.6 71.8 52.6
Logic. TensorLog 72.7 71.9 56.2 70.0 67.4 55.8

DRaiL

E2E +Inf 80.2 79.2 54.4 76.9 75.5 51.3
JOINTINF 80.7 79.5 55.6 75.2 74.0 52.5
GLOBAL 81.0 79.5 55.8 75.3 74.0 53.0
RELNETS 81.9 80.4 57.0 78.0 77.2 53.7

Table 2: General Results

Translate / Correlate: aligns the representation of pairs
of symbolic or raw entities. For example, aligning user
representations with text, to move between social and textual
information, or capturing the correlation between symbolic
judgements like agreement and matching ideologies.

3. Learning
The scoring function used for comparing output assignments
can be learned locally for each rule separately, or globally,
by considering the dependencies between rules.

Global Learning: This approach uses inference to ensure
that the networks’ parameters for all weighted rule tem-
plates are consistent across all decisions. Let Ψ be a factor
graph with potentials {ψr} ∈ Ψ over the all possible struc-
tures Y . Let θ = {θt} be a set of parameter vectors, and
Φt(xr, yr; θt) be the scoring function defined for potential
ψr(xr, yr). Here y ∈ Y corresponds to the current predic-
tion resulting from the MAP inference procedure and ŷ ∈ Y
corresponds to the gold structure. We can learn using the
structured hinge loss:

max
y∈Y

(∆(y, ŷ) +
∑
ψr∈Ψ

Φt(xr, yr; θt))−
∑
ψr∈Ψ

Φt(xr, yr; θt)

Joint Inference: Each weighted rule template optimized
independently, and joint inference performed at prediction.

4. Experimental Evaluation
Traditionally, stance prediction tasks have focused on pre-
dicting stances on a specific topic, such as abortion. Predict-
ing stances for a different topic, such as gun control would
require learning a new model from scratch. In this task,
we would like to leverage the fact that stances in different
domains are correlated. Instead of using a pre-defined set
of debate topics (i.e., symbolic entities) we define the pre-
diction task over claims, expressed in text, specific to each
debate. Concretely, each debate will have a different clam
(i.e., different value for C in the relation Claim(T, C), where

T corresponds to a debate thread). We refer to these settings
as Open-Domain and write down the task in Tab. 1. In
addition to the textual stance prediction problem (t0), where
T corresponds to a post, we represent users (U) and define a
user-level stance prediction problem (t1). We assume that
additional users read the posts and vote for content that sup-
ports their views, resulting in another prediction problem
(t2). Then, we define representation learning tasks, which
align symbolic (ideology, defined as I) and raw (users and
text) entities (t3,t4,t5). Finally, we write down all dependen-
cies and constrain the final prediction (c0,c1,c2,c3).

Dataset: We collected a set of 7,555 debates from de-
bate.org, containing a total of 42,245 posts across 10 broader
political issues. For a given issue, the debate topics are nu-
anced and vary according to the debate question expressed
in text (e.g. Should semi-automatic guns be banned, Con-
ceal handgun laws reduce violent crime). Debates have
at least two posts, containing up to 25 sentences each. In
addition to debates and posts, we collected the user profiles
of all users participating in the debates, as well as all users
that cast votes for the debate participants. Profiles consist of
attributes (e.g. gender, ideology). User data is considerably
sparse. We create two evaluation scenarios. In the random
split, debates are randomly divided into ten folds of equal
size. In the hard split, debates are separated by political
issue. This results in a harder problem, as the test and train-
ing data do not share topically related debates. We perform
10-fold cross validation and report accuracy.

Entity and Relation Encoders: We represent posts and
titles using a pre-trained BERT-small encoder (Turc et al.,
2019), a compact version of BERT (Devlin et al., 2019). For
users, we use feed-forward computations with ReLU activa-
tions over profile features and pre-trained node embedding
(Grover & Leskovec, 2016) over the friendship graph. All
relation and rule encoders are represented as feed-forward
networks with one hidden layer and ReLU activations. A
softmax is used over the rule embedding to obtain a score.
Note that all of these modules are updated during learning.
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Issue Ideology Closest statements in the embedding space

LGBT
Libl gay marriage ought be legalized, gay marriage should be legalized, same-sex marriage should be federally legal

homosexuals have a right to marriage, gay marriage

Con homosexuality is immoral, gay marriage is not bad, homophobia is justified,
Leviticus 18:22 and 20:13 prove the anti-gay position, homosexuality is not a sin nor taboo

Table 3: Embedding symbols (ideology)

Politician Issue Statement Label Score

Sanders Guns For background checks, and closing loopholes Pro .87
Sanders Guns Intervene with mental illness, to prevent mass shootings Mod .42
Sanders Guns Mixed approach to gun control vs. gun rights Mod .32
Sanders Abortion Advocate for family planning and funding for contraceptives Libl .62

Biden Guns Guns need to have trigger locks Pro .81
Biden Guns I go skeet-shooting, badly, and my sons go bird-hunting Con .51
Biden Abortion Accepts catholic church view that life begins at conception Con .86
Biden Abortion Ensure access to and funding for contraception Libl .63

Trump Guns No limits on guns; they save lives Con .85
Trump Guns Buying lots of ammunition and body armor should be a red flag Pro .74
Trump Abortion I am pro-life; fight ObamaCare abortion funding Con .52
Trump Abortion Planned Parenthood does great work on women’s health Libl .52

Figure 3: Statements made by politicians explained using our model trained on debate.org.

Tab. 2 shows results for different types of approaches for
capturing dependencies. Relational embeddings (Bordes
et al., 2013; Trouillon et al., 2016; Sun et al., 2019) and
probabilistic logics, a purely symbolic one (PSL) (Bach
et al., 2017) and a neuro-symbolic one (TensorLog) (Cohen
et al., 2020). We contrast these approaches with local mod-
els and a set of DRAIL models. For all methods, the same
underlying encoders were used. In E2E models, post and
user information is collapsed into a single module (rule),
whereas in INDNETS, JOINTINF, GLOBAL and RELNETS
they are modeled separately. We can appreciate the advan-
tage of relational embeddings in contrast to INDNETS for
user and voter stances, particularly in the case of ComplEx
and RotatE. We can attribute this to the fact that all ob-
jectives are trained jointly and entity encoders are shared.
However, approaches that explicitly model inference, like
PSL, TensorLog and DRAIL outperform relational embed-
dings and end-to-end neural networks. This is because they
enforce domain constraints. On the other hand, the main dif-
ference between DRAIL and the other probabilistic logics
is that our GLOBAL and RELNETS models back-propagate
to the base classifiers and fine-tune parameters using a struc-
tured objective. Whereas PSL and TensorLog learn rule
weights over the scores of the base classifiers. We observe
the advantage of having a global learning objective, sharing
information with RELNETS and breaking down the decision
into modules, instead of learning an end-to-end model.

Then, we perform a qualitative evaluation to illustrate our
ability to move between symbolic and raw information. In
Tab. 3, we embed ideologies and find the five statements
closest in the embedding space. This experiment shows that

our model is easy to interpret, and provides an explanation
for the decision made.

Finally, we evaluate our learned model over entities that
have not been observed during training. To do this, we ex-
tract statements made by three prominent politicians from
ontheissues.org. Then, we try to explain the politicians by
looking at their predicted ideology. Results for this evalua-
tion can be seen in Fig. 3. This figure shows the proportion
of statements that were identified for each ideology: left
(liberal or progressive), moderate, and right (conservative).
We find that we are able to recover the relative positions in
the political spectrum for the evaluated politicians: Bernie
Sanders, Joe Biden and Donald Trump. For the two eval-
uated issues, we find that Sanders is the most left leaning,
followed by Biden. In contrast, Donald Trump stands mostly
on the right. We also include some examples of the classi-
fied statements. We show that we are able to identify cases
in which the statement does not necessarily align with the
known ideology for each politician.

5. Conclusions
In this paper, we motivate the need for a declarative neural-
symbolic approach that can be applied to NLP tasks in-
volving long texts and contextualizing information. We
introduce a general framework to support this, and tackle
a problem with diverse relations and rich representations,
resulting in a model that is easy to interpret and expand.
The code and documentation for DRAIL will be released to
the community, to help promote this modeling approach for
other applications.
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