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Abstract
We introduce Sum-Product Logic (SPLog), a deep
probabilistic logic programming language that in-
corporates learning through predicates encoded
as probabilistic circuits, specifically sum-product
networks. We show how existing inference and
learning techniques can be adapted for the new
language. Our empirical illustrations demonstrate
that the benefits of supporting symbolic and deep
representations, both neural and probabilistic cir-
cuit ones for inference and (deep) learning from
examples. To the best of our knowledge, this work
is the first to propose a framework where deep
neural networks, probabilistic circuits, expressive
probabilistic-logical modeling and reasoning are
integrated.

1. Introduction
In the past three years, many deep probabilistic program-
ming languages (DPPL) have been proposed, e.g., Edward
(Tran et al., 2017), Pyro (Bingham et al., 2018) and Turing
(Ge et al., 2018), among others. The main focus of these
works was to leverage the expressive power of deep neural
networks within probabilistic programming systems. In par-
ticular, DeepProblog (Manhaeve et al., 2018) targets similar
goals in the relational setting, by allowing probabilistic pred-
icates to be specified as (conditional) distributions defined
via deep neural networks. It further supports end-to-end
training, program induction, and (sub-)symbolic representa-
tion as well as reasoning.

However, in this setting, deep models are used purely as
(unfaithful) conditional density estimators. This limits the
types of inferences that are possible in DeepProbLog: Lack-
ing any model for the inputs of the neural network, missing
values can not be inferred or sampled. A possible remedy
to these issues may be to use deep generative models such
as variational autoencoders (Kingma & Welling, 2014) or
normalizing flows (Rezende & Mohamed, 2015). While
these models specify joint probability distributions, infer-
ence within them is highly intractable or limited to a re-
stricted set of queries. If the goal of the overall system is to
answer a variety of probabilistic queries, the cost of com-
puting them within these models can become prohibitive.

Sum-Product Networks (SPNs) (Poon & Domingos, 2011)
is a probabilistic graphical model that allows us to do infer-
ence, marginalize, and sample in linear time in the size of
the model. The expressiveness and and speed make SPNs
an ideal candidate for our purposes.

Consequently, we propose a novel deep probabilistic pro-
gramming language, called Sum-Product Logic (SPLog). Its
main components are sum-product predicates, which encode
the predicates as SPNs so that all conditional and marginal
queries on these predicates may be answered exactly in
linear time.

2. Sum-Product Logic (Programming)
ProbLog. The ProbLog language (Kimmig et al., 2007)
allows its users to write probabilistic logic programs, in
which some logical facts are annotated with probabilities. It
uses sentential decision diagrams (SDD) (Darwiche, 2011)
to represent propositional knowledge bases. In particular
one can use the annotated disjunctions (AD) to assign log-
ical rules a probability: p :: a(~x) :− b1, . . . ,bm. This ex-
ample statement indicates that if the atoms b1, . . . ,bm are
true, then the predicate a(x) is implied with probability
p. This function opened the doors for further possibili-
ties, beyond just specifying constant probabilities. One
approach is to delegate the choice of probability to an ex-
ternal model which assigns them based on the predicate’s
arguments~x. This is the approach taken in Hybrid ProbLog
(Gutmann et al., 2010): here, primitive continuous distri-
butions such as Gaussians are used to specify distributions
p(~X), enabling the definition of flexible predicates such
as: p(~X =~x) :: a(~x) :− b1, . . . ,bm. To employ more flex-
ible distributions, DeepProbLog (Manhaeve et al., 2018)
uses deep neural networks to provide conditional probabil-
ities for predicates. In this case, predicates of the form:
p(~Y =~y|~X =~x) :: a(~x,~y) :−b1, . . . ,bm. are specified, where
p(~Y =~y|~X =~x) is the probability the neural network assigns
the output~y when given the input~x. By implementing auto-
matic differentiation in ProbLog, the network can be trained
jointly with the ProbLog model.

However, not all deep neural networks are safe to encode
calibrated distributions with complex dependency structures
nor do they encode joint distributions over inputs and out-
puts. To elevate this problem, we now show how, analo-
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gously, ProbLog programs may refer to SPNs as external
probabilistic models. This will give rise to the SPLog1

framework.

SPNs. Sum-Product Networks (SPNs)(Poon & Domingos,
2011) are deep mixture models represented via a rooted
directed acyclic graph with a recursively defined structure.
There are three types of nodes (same for the root node).
Sum-nodes that represent a mixture over distributions, and
they have weighted edges pointing to their children as the
mixing weights. Product-nodes with edges pointing to their
children, representing decompositions via context-specific
independencies. Finally, we have the Leaf-nodes represent-
ing parametric distributions (e.g Gaussian, Poisson, etc.).
To compute probabilities with an SPN, we simply have to
compute the values of the nodes starting from the leaves.
Since each leaf is a univariate distribution, one simply sets
the evidence on those distributions, obtains the probabilities
and then evaluate the network bottom up. On product nodes,
we simply multiply the values of the children nodes. On
sum nodes, we sum the weighted values of the children
nodes. The value at the root indicates the probability of
the given configuration. To compute marginals, i.e., the
probability of partial configurations, it is necessary to sum
out one or more variables. This can be achieved by setting
the probability at the leaves for those variables to 1 and then
proceed as before. Conditional probabilities can then be
computed as the ratio of partial configurations. To compute
MPE states, we replace sum nodes by max nodes and then
evaluate the graph first with a bottom up pass, but instead
of weighted sums we pass along the weighted maximum
value. Finally, in a top down pass, we select the paths that
lead to the maximum value, finding the MPE states of fired
leaves. Differently to other probabilistic graphical models,
sum-product networks (SPNs) support exact tractable infer-
ence i.e. inference complexity is linear in the size of the
graph.

SPLog. An SPLog program is a ProbLog program that
is extended with a set of ground sum-product annotated
disjunctions (spADs) of the form:

spn(ma, ~Q,~E =~e) :: a(~e, ~q1); . . . ;a(~e, ~qn) :−b1, . . . ,bm,

where the bi are atoms, ~E =~e is a vector of random vari-
ables representing evidence as the input of the SPN for pred-
icate a, ~Q is the set of random variables being queried, and
q1, . . . ,qn are vectors of its realisations. ma is the identifier
of a SPN model which specifies a probability distribution
over the set of variables ~X , where ~Q⊆ ~X ,~E ⊆ ~X ,~E ∩ ~Q = /0.
We use the notation spn(ma, ~Q,~E =~e) to indicate that this
set of logical rules is true with the probabilities pma(~Q =
~qi|~E =~e), which the SPN assigns to the query realisations
given the evidence. It is clear that SPLog directly inherits

1Code will be available on Github upon acceptance.

its semantics, and to large extent also its inference, from
(Deep)ProbLog.

Algorithm 1 SPLog - training procedure
ground = ProbLog.ground(q)
sdd = SDD.create_from(ground)
~x = ProbLog.extract_parameters(model)
p, ∂ p

∂x = ProbLog.solve(sdd,~x)
optimizer.backward(− 1

p+ε
· ∂ p

∂x )

The approach to jointly train the parameters of probabilistic
facts and sum-product networks in the SPLog program is
the following. Similar to (Manhaeve et al., 2018), we use
the learning from entailment (i.e. learning from queries)
setting. That is, for a given SPLog program with parameters
X and a set Q of pairs (q, p) where q is a query and p its
desired success probability, we compute for a loss function
L:

argmin~x
1
|Q|∑(q,p)∈Q L(PX =~x(q), p) .

Alg. 1 describes the training loop given an SPLog program,
its SPN models and a query. Specifically, to compute the
gradient of the SPN parameters with respect to the loss func-
tion (step 4), we can apply automatic differentiation both
to the ProbLog program and to the SPNs. For the former,
the algebraic extension of ProbLog (aProbLog) (Kimmig
et al., 2011) is used. This associates to each probabilis-
tic fact a value from an arbitrary commutative semiring.
aProbLog uses a labeling function that explicitly associates
values from the chosen semiring with both facts and their
negations combining these using semiring addition ⊕ and
multiplication⊗ on the SDD. For SPLog we are using gradi-
ent semiring, whose elements are tuples of the form (p, ∂ p

∂x ),
where p is a probability and ∂ p

∂x is the partial derivative
of the probability p with respect to a parameter x. We
write t(pi) :: fi for the learnable probability of a proba-
bilistic fact. All this forms the basis for forward mode
automatic differentiation within ProbLog, and it results in
the partial derivatives of the loss with respect to the SPN
probabilities ∂L/∂ pma(~Q = ~qi|~E = ~e). For all technical
details we refer to (Manhaeve et al., 2018). In order to com-
pute the gradients within the SPN, we can use backward
mode automatic differentiation as implemented in standard
deep learning frameworks. This provides the partial deriva-
tives of SPN outputs with respect to its parameters θ , i.e.,
∂ pma(~Q = ~qi|~E =~e)/∂θ . By multiplying the two sets of
gradients, we obtain the partial derivatives of the loss with
respect to the SPN parameters ∂L/∂θ , which we use for
gradient descent.
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Figure 1. Loss and accuracy of the addition experiment for (left) codes of full images and (right) partial images. The highest accuracy
values for the joint model (left) are 60.76% for train (sky blue) and 60.69% for test (olive). For the marginal model (right), we get
64.76% for train and 66.03% for test. Note that the accuracy in this task involves the prediction of two images, indicating a classification
accuracy of more than 80% per image. (best in color)

3. Empirical Illustrations
Our intention here is to investigate the benefits of SPLog.
To this aim, we implemented everything using PyTorch
based on the SPFlow library (Molina et al., 2019) and the
DeepProbLog code (Manhaeve et al., 2018) and ran two
experiments on the MNIST data set.

Tractable inference of probabilistic circuits within
ProbLog. To illustrate the benefit of combining ProbLog
and SPNs, we revisited the MNIST Addition experiment
from (Manhaeve et al., 2018) using SPNs instead of deep
neural networks. The idea behind the experiments is to
perform the addition of two digits represented by two ran-
domly chosen images from the MNIST data set. One query
of the program contains the indices of the two MNIST im-
ages as the inputs and the resulting sum as the label. The
corresponding SPLog program is:

spn(mnist,[X],Y,[0,1,2,...,9]) :: dig(X,Y).
add(X,Y,Z):-dig(X,X2),dig(Y,Y2),Z is X2+Y2.

That is, we specify the spAD as: spn(mdig,~X ,~Y ) ::
dig(~x,0); . . . ;dig(~x,9), where ~X = x1, . . . ,xk is a vector of
ground terms representing the inputs of the SPN for predi-
cate dig while 0, . . . ,9 are possible classes of the SPN, i.e.,
we specify the spAD for an image of the digit 5 as follows:

spn(mdig, 5 , [0, . . . ,9]) :: dig( 5 ,0), . . . ,dig( 5 ,9).

Because SPNs can handle incomplete data, we utilized this
advantage by making the task more difficult. Namely, it
was performed with only partially available data, i.e., the
right half of the pixels were removed from each image. The
results proved that the model converges well as can bee seen
in Figure 1.

End-to-end learning across deep neural networks, prob-
abilistic circuits and ProbLog. Even though SPNs resolve

the issues of DeepProbLog we are addressing, the idea of
SPLog is not to replace DNNs. On the contrary, DNNs play
an important role in our framework. Using a variational
auto-encoder based on a feed-forward DNN we have run the
MNIST addition experiment in the following fashion. The
original images were replaced by the codes produced by
the encoder network of the VAE which was trained jointly
within our framework. The results are summarized in Fig.1.

Probabilistic Auto-Encoder. Furthermore, instead of mod-
eling only the code P(Ci|code(X)) for the ProbLog, the
distribution of the original image and its code can be jointly
modeled with SPNs, i.e. P(Ci|X ,code(X)). This results in
a novel auto-encoder equipped with tractable probabilistic
models, namely Probabilistic Auto-Encoder (PAE). Next to
the AE, the PAE comprises two SPNs, one modeling the
joint distribution of the original image and its code, and the
other modeling the code and its reconstructions. Adding the
lower bound of the KL divergence (KLD) between these
two SPNs into the loss, which is calculated employing the
Gauß-Hermite quadrature based on the mean-field assump-
tion (Hershey & Olsen, 2007), we keep the distributions
of the two SPNs close. Compared to a VAE, the PAE pro-
vides several relaxations. Firstly, the isotropic multivariate
Gaussian assumption made on the code distribution can be
extended to a mixture of Gaussians. Secondly, conditional
samples of the code given an original image can be acquired
by one bottom-up pass and another top-down pass on the
SPN, without the re-parameterization trick. Last but not
least, both encoder and decoder have a probabilistic density
measure, pointing out how likely the code or a reconstruc-
tion meet the training data domain. The main advantage
of the PAE lies in the utilization of the SPNs. Even if the
given data set contains missing and/or noisy data, one can
train the PAE by sampling the code from the first SPN. The
initial results are summarized in Fig. 2. As in our first exper-
iment, we removed the right half of the image pixels. Only
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in the rows 4, 7 and 8 with MPE completed images (second
column) admit the shape of 0. Whereas the reconstructed
images from the MPE sampled code (third column) yield
better results.

Figure 2. Initial results of PAE. First column represents “marginal-
ized” images, second - image completion with MPE, third - recon-
structions by decoder from MPE sampled code, the rest - recon-
structions by decoder from conditional sampled code.

4. Conclusion and Future Work
Triggered by the re-emerging research area of Hybrid AI—
the computational and mathematical modeling of complex
AI systems— in this work we sketched SPLog, a novel deep
probabilistic PL (DPPL), which combines deep probabilistic
models—SPNs—with neural probabilistic logic program-
ming —DeepProbLog. Specifically, SPLog incorporates the
advantages of SPNs into ProbLog and so facilitates PAE. It
has shown good performance in solving challenging tasks
on MNIST data set. This paves the way towards a unifying
deep programming language for System 2 approaches (Ben-
gio, 2019).

The performed empirical illustrations open the door to fur-
ther advancements, e.g. "reverse" Neural-Symbolic Visual
Question Answering (NS-VQA) (Yi et al., 2018). Since one
can handle the non-probabilistic, i.e. true/false facts within
ProbLog, one can consider the following example. After the
MNIST addition model is trained as it is stated in 3, we can
ask for the visual solution of the given query. We provide an
SPLog program that takes as an input query the result of the
addition of two single digits. Utilizing (conditional) sam-
pling, the framework retrieves the images for all possible
solutions in accordance with the commutative property of +.
The output of such a program, given the query result(10),

will then be

result(10) = 1 + 9 = 2 + 8 = . . .= 5 + 5

The Einsum Networks (EiNets) (Peharz et al., 2020) feature
the advancement in scalability of probabilistic circuits. This
term was introduced by (Van den Broeck et al., 2019) as
the umbrella term for tractable probabilistic models. The
EiNets are an important step stone towards (sub-)symbolic
reasoning on “big” data sets like Celeba (Liu et al., 2015)
and SVHN (Netzer et al., 2011) (format 1). We envision
their integration in our framework as interesting direction
for scaling up SPLog.
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