
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

Sum-Product Logic: Integrating Probabilistic Circuits into DeepProbLog

Anonymous Authors1

Abstract
We introduce Sum-Product Logic (SPLog), a deep
probabilistic logic programming language that in-
corporates learning through predicates encoded
as probabilistic circuits, specifically sum-product
networks. We show how existing inference and
learning techniques can be adapted for the new
language. Our empirical illustrations demonstrate
that the benefits of supporting symbolic and deep
representations, both neural and probabilistic cir-
cuit ones for inference and (deep) learning from
examples. To the best of our knowledge, this work
is the first to propose a framework where deep
neural networks, probabilistic circuits, expressive
probabilistic-logical modeling and reasoning are
integrated.

1. Introduction
In the past three years, many deep probabilistic program-
ming languages (DPPL) have been proposed, e.g., Edward
(Tran et al., 2017), Pyro (Bingham et al., 2018) and Turing
(Ge et al., 2018), among others. The main focus of these
works was to leverage the expressive power of deep neural
networks within probabilistic programming systems. In par-
ticular, DeepProblog (Manhaeve et al., 2018) targets similar
goals in the relational setting, by allowing probabilistic pred-
icates to be specified as (conditional) distributions defined
via deep neural networks. It further supports end-to-end
training, program induction, and (sub-)symbolic representa-
tion as well as reasoning.

However, in this setting, deep models are used purely as
(unfaithful) conditional density estimators. This limits the
types of inferences that are possible in DeepProbLog: Lack-
ing any model for the inputs of the neural network, missing
values can not be inferred or sampled. A possible remedy
to these issues may be to use deep generative models such
as variational autoencoders (Kingma & Welling, 2014) or
normalizing flows (Rezende & Mohamed, 2015). While
these models specify joint probability distributions, infer-
ence within them is highly intractable or limited to a re-
stricted set of queries. If the goal of the overall system is to
answer a variety of probabilistic queries, the cost of com-
puting them within these models can become prohibitive.

Sum-Product Networks (SPNs) (Poon & Domingos, 2011)
is a probabilistic graphical model that allows us to do infer-
ence, marginalize, and sample in linear time in the size of
the model. The expressiveness and and speed make SPNs
an ideal candidate for our purposes.

Consequently, we propose a novel deep probabilistic pro-
gramming language, called Sum-Product Logic (SPLog). Its
main components are sum-product predicates, which encode
the predicates as SPNs so that all conditional and marginal
queries on these predicates may be answered exactly in
linear time.

2. Sum-Product Logic (Programming)
ProbLog. The ProbLog language (Kimmig et al., 2007)
allows its users to write probabilistic logic programs, in
which some logical facts are annotated with probabilities. It
uses sentential decision diagrams (SDD) (Darwiche, 2011)
to represent propositional knowledge bases. In particular
one can use the annotated disjunctions (AD) to assign log-
ical rules a probability: p :: a(~x) :− b1, . . . ,bm. This ex-
ample statement indicates that if the atoms b1, . . . ,bm are
true, then the predicate a(x) is implied with probability
p. This function opened the doors for further possibili-
ties, beyond just specifying constant probabilities. One
approach is to delegate the choice of probability to an ex-
ternal model which assigns them based on the predicate’s
arguments~x. This is the approach taken in Hybrid ProbLog
(Gutmann et al., 2010): here, primitive continuous distri-
butions such as Gaussians are used to specify distributions
p(~X), enabling the definition of flexible predicates such
as: p(~X =~x) :: a(~x) :− b1, . . . ,bm. To employ more flex-
ible distributions, DeepProbLog (Manhaeve et al., 2018)
uses deep neural networks to provide conditional probabil-
ities for predicates. In this case, predicates of the form:
p(~Y =~y|~X =~x) :: a(~x,~y) :−b1, . . . ,bm. are specified, where
p(~Y =~y|~X =~x) is the probability the neural network assigns
the output~y when given the input~x. By implementing auto-
matic differentiation in ProbLog, the network can be trained
jointly with the ProbLog model.

However, not all deep neural networks are safe to encode
calibrated distributions with complex dependency structures
nor do they encode joint distributions over inputs and out-
puts. To elevate this problem, we now show how, analo-

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Sum-Product Logic

gously, ProbLog programs may refer to SPNs as external
probabilistic models. This will give rise to the SPLog1

framework.

SPNs. Sum-Product Networks (SPNs)(Poon & Domingos,
2011) are deep mixture models represented via a rooted
directed acyclic graph with a recursively defined structure.
There are three types of nodes (same for the root node).
Sum-nodes that represent a mixture over distributions, and
they have weighted edges pointing to their children as the
mixing weights. Product-nodes with edges pointing to their
children, representing decompositions via context-specific
independencies. Finally, we have the Leaf-nodes represent-
ing parametric distributions (e.g Gaussian, Poisson, etc.).
To compute probabilities with an SPN, we simply have to
compute the values of the nodes starting from the leaves.
Since each leaf is a univariate distribution, one simply sets
the evidence on those distributions, obtains the probabilities
and then evaluate the network bottom up. On product nodes,
we simply multiply the values of the children nodes. On
sum nodes, we sum the weighted values of the children
nodes. The value at the root indicates the probability of
the given configuration. To compute marginals, i.e., the
probability of partial configurations, it is necessary to sum
out one or more variables. This can be achieved by setting
the probability at the leaves for those variables to 1 and then
proceed as before. Conditional probabilities can then be
computed as the ratio of partial configurations. To compute
MPE states, we replace sum nodes by max nodes and then
evaluate the graph first with a bottom up pass, but instead
of weighted sums we pass along the weighted maximum
value. Finally, in a top down pass, we select the paths that
lead to the maximum value, finding the MPE states of fired
leaves. Differently to other probabilistic graphical models,
sum-product networks (SPNs) support exact tractable infer-
ence i.e. inference complexity is linear in the size of the
graph.

SPLog. An SPLog program is a ProbLog program that
is extended with a set of ground sum-product annotated
disjunctions (spADs) of the form:

spn(ma, ~Q,~E =~e) :: a(~e, ~q1); . . . ;a(~e, ~qn) :−b1, . . . ,bm,

where the bi are atoms, ~E =~e is a vector of random vari-
ables representing evidence as the input of the SPN for pred-
icate a, ~Q is the set of random variables being queried, and
q1, . . . ,qn are vectors of its realisations. ma is the identifier
of a SPN model which specifies a probability distribution
over the set of variables ~X , where ~Q⊆ ~X ,~E ⊆ ~X ,~E ∩ ~Q = /0.
We use the notation spn(ma, ~Q,~E =~e) to indicate that this
set of logical rules is true with the probabilities pma(~Q =
~qi|~E =~e), which the SPN assigns to the query realisations
given the evidence. It is clear that SPLog directly inherits

1Code will be available on Github upon acceptance.

its semantics, and to large extent also its inference, from
(Deep)ProbLog.

Algorithm 1 SPLog - training procedure
ground = ProbLog.ground(q)
sdd = SDD.create_from(ground)
~x = ProbLog.extract_parameters(model)
p, ∂ p

∂x = ProbLog.solve(sdd,~x)
optimizer.backward(− 1

p+ε
· ∂ p

∂x)

The approach to jointly train the parameters of probabilistic
facts and sum-product networks in the SPLog program is
the following. Similar to (Manhaeve et al., 2018), we use
the learning from entailment (i.e. learning from queries)
setting. That is, for a given SPLog program with parameters
X and a set Q of pairs (q, p) where q is a query and p its
desired success probability, we compute for a loss function
L:

argmin~x
1
|Q|∑(q,p)∈Q L(PX =~x(q), p) .

Alg. 1 describes the training loop given an SPLog program,
its SPN models and a query. Specifically, to compute the
gradient of the SPN parameters with respect to the loss func-
tion (step 4), we can apply automatic differentiation both
to the ProbLog program and to the SPNs. For the former,
the algebraic extension of ProbLog (aProbLog) (Kimmig
et al., 2011) is used. This associates to each probabilis-
tic fact a value from an arbitrary commutative semiring.
aProbLog uses a labeling function that explicitly associates
values from the chosen semiring with both facts and their
negations combining these using semiring addition ⊕ and
multiplication⊗ on the SDD. For SPLog we are using gradi-
ent semiring, whose elements are tuples of the form (p, ∂ p

∂x),
where p is a probability and ∂ p

∂x is the partial derivative
of the probability p with respect to a parameter x. We
write t(pi) :: fi for the learnable probability of a proba-
bilistic fact. All this forms the basis for forward mode
automatic differentiation within ProbLog, and it results in
the partial derivatives of the loss with respect to the SPN
probabilities ∂L/∂ pma(~Q = ~qi|~E = ~e). For all technical
details we refer to (Manhaeve et al., 2018). In order to com-
pute the gradients within the SPN, we can use backward
mode automatic differentiation as implemented in standard
deep learning frameworks. This provides the partial deriva-
tives of SPN outputs with respect to its parameters θ , i.e.,
∂ pma(~Q = ~qi|~E =~e)/∂θ . By multiplying the two sets of
gradients, we obtain the partial derivatives of the loss with
respect to the SPN parameters ∂L/∂θ , which we use for
gradient descent.

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Sum-Product Logic

Figure 1. Loss and accuracy of the addition experiment for (left) codes of full images and (right) partial images. The highest accuracy
values for the joint model (left) are 60.76% for train (sky blue) and 60.69% for test (olive). For the marginal model (right), we get
64.76% for train and 66.03% for test. Note that the accuracy in this task involves the prediction of two images, indicating a classification
accuracy of more than 80% per image. (best in color)

3. Empirical Illustrations
Our intention here is to investigate the benefits of SPLog.
To this aim, we implemented everything using PyTorch
based on the SPFlow library (Molina et al., 2019) and the
DeepProbLog code (Manhaeve et al., 2018) and ran two
experiments on the MNIST data set.

Tractable inference of probabilistic circuits within
ProbLog. To illustrate the benefit of combining ProbLog
and SPNs, we revisited the MNIST Addition experiment
from (Manhaeve et al., 2018) using SPNs instead of deep
neural networks. The idea behind the experiments is to
perform the addition of two digits represented by two ran-
domly chosen images from the MNIST data set. One query
of the program contains the indices of the two MNIST im-
ages as the inputs and the resulting sum as the label. The
corresponding SPLog program is:

spn(mnist,[X],Y,[0,1,2,...,9]) :: dig(X,Y).
add(X,Y,Z):-dig(X,X2),dig(Y,Y2),Z is X2+Y2.

That is, we specify the spAD as: spn(mdig,~X ,~Y) ::
dig(~x,0); . . . ;dig(~x,9), where ~X = x1, . . . ,xk is a vector of
ground terms representing the inputs of the SPN for predi-
cate dig while 0, . . . ,9 are possible classes of the SPN, i.e.,
we specify the spAD for an image of the digit 5 as follows:

spn(mdig, 5 , [0, . . . ,9]) :: dig(5 ,0), . . . ,dig(5 ,9).

Because SPNs can handle incomplete data, we utilized this
advantage by making the task more difficult. Namely, it
was performed with only partially available data, i.e., the
right half of the pixels were removed from each image. The
results proved that the model converges well as can bee seen
in Figure 1.

End-to-end learning across deep neural networks, prob-
abilistic circuits and ProbLog. Even though SPNs resolve

the issues of DeepProbLog we are addressing, the idea of
SPLog is not to replace DNNs. On the contrary, DNNs play
an important role in our framework. Using a variational
auto-encoder based on a feed-forward DNN we have run the
MNIST addition experiment in the following fashion. The
original images were replaced by the codes produced by
the encoder network of the VAE which was trained jointly
within our framework. The results are summarized in Fig.1.

Probabilistic Auto-Encoder. Furthermore, instead of mod-
eling only the code P(Ci|code(X)) for the ProbLog, the
distribution of the original image and its code can be jointly
modeled with SPNs, i.e. P(Ci|X ,code(X)). This results in
a novel auto-encoder equipped with tractable probabilistic
models, namely Probabilistic Auto-Encoder (PAE). Next to
the AE, the PAE comprises two SPNs, one modeling the
joint distribution of the original image and its code, and the
other modeling the code and its reconstructions. Adding the
lower bound of the KL divergence (KLD) between these
two SPNs into the loss, which is calculated employing the
Gauß-Hermite quadrature based on the mean-field assump-
tion (Hershey & Olsen, 2007), we keep the distributions
of the two SPNs close. Compared to a VAE, the PAE pro-
vides several relaxations. Firstly, the isotropic multivariate
Gaussian assumption made on the code distribution can be
extended to a mixture of Gaussians. Secondly, conditional
samples of the code given an original image can be acquired
by one bottom-up pass and another top-down pass on the
SPN, without the re-parameterization trick. Last but not
least, both encoder and decoder have a probabilistic density
measure, pointing out how likely the code or a reconstruc-
tion meet the training data domain. The main advantage
of the PAE lies in the utilization of the SPNs. Even if the
given data set contains missing and/or noisy data, one can
train the PAE by sampling the code from the first SPN. The
initial results are summarized in Fig. 2. As in our first exper-
iment, we removed the right half of the image pixels. Only

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Sum-Product Logic

in the rows 4, 7 and 8 with MPE completed images (second
column) admit the shape of 0. Whereas the reconstructed
images from the MPE sampled code (third column) yield
better results.

Figure 2. Initial results of PAE. First column represents “marginal-
ized” images, second - image completion with MPE, third - recon-
structions by decoder from MPE sampled code, the rest - recon-
structions by decoder from conditional sampled code.

4. Conclusion and Future Work
Triggered by the re-emerging research area of Hybrid AI—
the computational and mathematical modeling of complex
AI systems— in this work we sketched SPLog, a novel deep
probabilistic PL (DPPL), which combines deep probabilistic
models—SPNs—with neural probabilistic logic program-
ming —DeepProbLog. Specifically, SPLog incorporates the
advantages of SPNs into ProbLog and so facilitates PAE. It
has shown good performance in solving challenging tasks
on MNIST data set. This paves the way towards a unifying
deep programming language for System 2 approaches (Ben-
gio, 2019).

The performed empirical illustrations open the door to fur-
ther advancements, e.g. "reverse" Neural-Symbolic Visual
Question Answering (NS-VQA) (Yi et al., 2018). Since one
can handle the non-probabilistic, i.e. true/false facts within
ProbLog, one can consider the following example. After the
MNIST addition model is trained as it is stated in 3, we can
ask for the visual solution of the given query. We provide an
SPLog program that takes as an input query the result of the
addition of two single digits. Utilizing (conditional) sam-
pling, the framework retrieves the images for all possible
solutions in accordance with the commutative property of +.
The output of such a program, given the query result(10),

will then be

result(10) = 1 + 9 = 2 + 8 = . . .= 5 + 5

The Einsum Networks (EiNets) (Peharz et al., 2020) feature
the advancement in scalability of probabilistic circuits. This
term was introduced by (Van den Broeck et al., 2019) as
the umbrella term for tractable probabilistic models. The
EiNets are an important step stone towards (sub-)symbolic
reasoning on “big” data sets like Celeba (Liu et al., 2015)
and SVHN (Netzer et al., 2011) (format 1). We envision
their integration in our framework as interesting direction
for scaling up SPLog.

References
Bengio, Y. From System 1 Deep Learning to System 2 Deep

Learning. Invited talk NeurIPS, 2019.

Bingham, E., Chen, J. P., Jankowiak, M., Obermeyer, F.,
Pradhan, N., Karaletsos, T., Singh, R., Szerlip, P., Hors-
fall, P., and Goodman, N. D. Pyro: Deep Universal Prob-
abilistic Programming. In Journal of Machine Learning
Research, 2018.

Darwiche, A. SDD: A New Canonical Representation of
Propositional Knowledge Bases. In In Proceedings of
the Twenty-Second International Joint Conference on
Artificial Intelligence (IJCAI), pp. 819–826, 2011.

Ge, H., Xu, K., and Ghahramani, Z. Turing: a language
for flexible probabilistic inference. In International Con-
ference on Artificial Intelligence and Statistics, AISTATS
2018, 9-11 April 2018, Playa Blanca, Lanzarote, Canary
Islands, Spain, pp. 1682–1690, 2018. URL http://
proceedings.mlr.press/v84/ge18b.html.

Gutmann, B., Jaeger, M., and De Raedt, L. Extending
ProbLog with Continuous Distributions. Inductive Logic
Programming, 2010.

Hershey, J. R. and Olsen, P. A. Approximating the kull-
back leibler divergence between gaussian mixture mod-
els. In 2007 IEEE International Conference on Acoustics,
Speech and Signal Processing - ICASSP ’07, volume 4,
pp. IV–317–IV–320, 2007.

Kimmig, A., De Raed, L., and Toivonen, H. ProbLog: A
probabilistic Prolog and its application in link discovery.
In IJCAI, pp. 2462–2467, 2007.

Kimmig, A., Van den Broeck, G., and De Raed, L. An
Algebraic Prolog for Reasoning about Possible Worlds.
In AAAI, 2011.

Kingma, D. P. and Welling, M. Auto-Encoding Variational
Bayes. In ICLR, 2014.

http://proceedings.mlr.press/v84/ge18b.html
http://proceedings.mlr.press/v84/ge18b.html

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Sum-Product Logic

Liu, Z., Luo, P., Wang, X., and Tang, X. Deep learning face
attributes in the wild. In Proceedings of International
Conference on Computer Vision (ICCV), December 2015.

Manhaeve, R., Dumančić, S., Kimmig, A., Demeester, T.,
and De Raedt, L. DeepProbLog: Neural Probabilistic
Logic Programming. In NeurIPS, pp. 3753–3763, 2018.

Molina, A., Vergari, A., Stelzner, K., Peharz, R., Sub-
ramani, P., Di Mauro, N., Poupart, P., and Kersting,
K. SPFlow: An Easy and Extensible Library for Deep
Probabilistic Learning using Sum-Product Networks.
arXiv:1901.03704, 2019.

Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., and
Ng, A. Reading digits in natural images with unsuper-
vised feature learning. NIPS, 01 2011.

Peharz, R., Lang, S., Vergari, A., Stelzner, K., Molina,
A., Trapp, M., Van den Broeck, G., Kersting, K., and
Ghahramani, Z. Einsum Networks: Fast and Scalable
Learning of Tractable Probabilistic Circuits. In ICML,
2020.

Poon, H. and Domingos, P. Sum-Product Networks: A New
Deep Architecture. In UAI, pp. 337–346, 2011.

Rezende, D. J. and Mohamed, S. Variational Inference with
Normalizing Flows. Proceedings of the 32nd Interna-
tional Conference on Machine Learning, Lille, France,
2015. JMLR: W&CP volume 37., 2015.

Tran, D., Hoffman, M. D., Saurous, R. A., Brevdo, E., Mur-
phy, K., and Blei, D. M. Deep Probabilistic Programming.
In ICLR, 2017.

Van den Broeck, G., Di Mauro, N., and Vergari, A. Tractable
Probabilistic Models: Representations, algorithms, learn-
ing, and applications. In Tutorial at UAI, Juli 2019.

Yi, K., Wu, J., Gan, C., Torralba, A., Kohli, P., and Tenen-
baum, J. B. Neural-symbolic vqa: Disentangling rea-
soning from vision and language understanding. In Ad-
vances in Neural Information Processing Systems, pp.
1039–1050, 2018.

