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Abstract
One of the key challenges in automated chemical
synthesis planning is to propose diverse and reli-
able reactions. A common approach is to generate
reactions using reaction templates, which repre-
sent a reaction as a fixed graph transformation.
This enables accurate and interpretable predic-
tions but can suffer from limited diversity. On the
other hand, template-free methods increase diver-
sity but can be prone to making trivial mistakes.
Inspired by the efficacy of reaction templates, we
propose Molecule Edit Graph Attention Network
(MEGAN), a template-free model that encodes
reaction as a sequence of graph edits. Our model
achieves state-of-the-art results on a standard ret-
rosynthesis benchmark without any manual rule
encoding.

1. Introduction
Chemical synthesis planning is a demanding task due to
the substantial size and complexity of the reaction space.
Computer-aided methods are a promising approach to au-
tomate this process (Corey & Wipke, 1969; Segler et al.,
2018; Coley et al., 2018a; Lee et al., 2019).

Generating reaction candidates is an essential part of auto-
mated synthesis planning. The accuracy with which we are
able to predict reaction outcomes remains a key roadblock
in wider applicability of computer-aided methods (Davies,
2019).

Many of the recent approaches to reaction generation use
reaction templates, which are encoded graph transformation
rules that enable generating reactions by applying them to
the input molecule. Such methods are highly interpretable
and achieve strong performance (Dai et al., 2020). However,
template-based methods have some disadvantages. Perhaps
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the most pressing one is that due to the computational limits
they require modeling reactions using a relatively small
number of templates. This necessarily limits the size of the
chemical reaction space accessible by such methods.

The shortcomings of template-based methods have been
addressed with the development of template-free models
for reaction generation. In particular, modeling reaction
generation as a machine translation task has lead to promis-
ing results (Liu et al., 2017). This and related methods are
still however often outperformed by template-based meth-
ods (Dai et al., 2020), and have been also argued to be prone
to making trivial mistakes (Molga et al., 2019).

Arguably, a more natural approach to reaction generation
is to represent reaction as a sequence of graph edits. Brad-
shaw et al. (2018) models reaction as a sequence of bond
removals and additions. However, their approach is limited
to a certain subset of the chemical reaction space (reactions
with linear chain topology) and forward synthesis (predict-
ing product of a reaction). Do et al. (2019) models reaction
as a set of operation on atom pairs. Similarly, their method
cannot be readily applied to retrosynthesis (predicting sub-
strates based on the product) due to the lack of support for
atom addition.

In this work, we present the Molecule Edit Graph Atten-
tion Network (MEGAN). We propose an encoder-decoder
model that generates a reaction as a sequence of graph edits.
We include atom addition and bond removal in the action
space to apply the model to the retrosynthesis task, where
we achieve state-of-the-art results. Specifically, our main
contributions are as follows:

• We propose a novel graph encoder-decoder architecture
for reaction generation.

• We achieve state-of-the-art results in retrosynthesis.

• We demonstrate the feasibility of representing reaction
as a sequence of graph edits for retrosynthesis, which
is a promising step towards more interpretable neural
models for reaction generation.
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Figure 1. Retrosynthesis prediction generated by MEGAN. The model modifies the target molecule by sequentially executing actions on
the molecular graph until it decides to stop.

2. Molecule Edit Graph Attention Network
Graph Convolutional Networks (GCN) have been success-
fully applied to a variety of tasks in computational chemistry
(Duvenaud et al., 2015; Xie & Grossman, 2018; You et al.,
2018a; Coley et al., 2018b). Our Molecule Edit Graph Atten-
tion Network (MEGAN) is an encoder-decoder architecture
based on GCN that is able to predict a sequential series of
actions on atoms and bonds of a chemical compound. The
key innovation is to combine an effective architecture and
training procedure, which enables us to extend ideas from
Bradshaw et al. (2018); Do et al. (2019) to retrosynthesis
and achieve state of the art performance. We begin by de-
scribing the input and the output representation. Next, we
introduce the overall architecture.

2.1. Input and output representation

Reaction as a sequence of edits We reformulate retrosyn-
thesis as predicting a series of actions on the graph of the
product molecule that produce the reactants. We define the
following graph actions:

• Edit atom properties (EditAtom)

• Edit bond between two atoms (EditBond)

• Add new atom to the graph (AddAtom)

• Add new benzene ring to the graph (AddBenzene)

• Stop generation (Stop)

EditAtom changes properties of atoms, such as the formal
charge, chirality or aromaticity. EditBond adds, edits or
deletes a bond between two atoms. AddAtom adds a new
atom of a specified type as a neighbor of another atom
already existing in the graph, with a specified bond type.
AddBenzene optimizes atom addition by appending a com-
plete benzene ring to a selected carbon atom. Stop action

indicates the end of the generation process. We use atom
mapping information to define an order on actions, which
we describe in the experimental section. We describe the
possible actions in details in the Supplement.

Molecule representation MEGAN takes as input a molec-
ular graph, which is represented by labeled node vectors
and a labeled adjacency matrix. More specifically, the in-
put consists of a matrix of features HOH ∈ Z≥0n×hOH

and an adjacency matrix AOH ∈ Z≥0n×n×aOH , where n
is the number of nodes in a graph and hOH and aOH are
sizes of concatenated one-hot vectors of atom and bond
features. Hydrogen atoms are removed from the graph, as
for heavy atoms the number of neighboring hydrogen atoms
can be deduced implicitly or marked explicitly by a special
atom feature if needed. We selected a minimal set of atom
and bond features that allows for exact reconstruction of
SMILES of all products and reactants from the develop-
ment set. We describe the featurization in details in the
Supplement.

2.2. Model architecture

Input embedding Input features are embedded using linear
layers femb : RhOH → Rh and gemb : RaOH → Ra:

Rn×h 3 H0 = femb(H
OH) (1)

Rn×n×a 3 A = gemb(A
OH) (2)

GCN-att layer The basic building block of the network is
an attention-based GCN layer named GCN-att. We enhance
the GCN layer from Veličković et al. (2017) by adding bond
features as input information for computing the attention
values. Let Ht ∈ Rn×h denote input node features for the
t-th GCN-att layer and N(i) ⊂ Z≥0 denote set of indices of
neighbors of node at index i (where i ∈ N(i)). We calculate
new node features Ht+1 ∈ Rn×h as follows:
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Rd 3 Ht
i
′ = σr(f tatt(H

t
i )) (3)

R2d+a 3 Bt
ij = Ht

i
′ ‖ Ht

j
′ ‖ Ai,j (4)

RK 3 Ct
ij = f tatt′(B

t
ij) (5)

Rh 3 Gt
ik =

∑
j∈N(i)

expCt
ijk∑

l∈N(i)

expCt
ilk

Ht
j (6)

Rh 3 Ht+1
i = ‖

1≤k≤K
σr(f tk(Gt

i)) (7)

where σr denotes relu activation function, ‖ indicates vector
concatenation,K ∈ N+ is the number of attention heads and
fatt : Rh → Rd, fatt′ : R2d+a → RK and f : Rh → Rh/K

are standard linear layers. Numbers h, a, d and K are
hyperparameters of the model. We require that h is divisible
by K. We use the same hyperparameter values for all GCN-
att layers in the model, but do not share their weights.

Supernode A single pass through a GCN-att layer trans-
fers information only between neighboring atoms. This can
potentially hinder the ability to learn graph-level features,
such as coexistence of functional groups in different parts
of a compound. To mitigate this, we introduce an additional
node named supernode (Li et al., 2017), which is connected
to all atoms in the graph with a special SUPERNODE bond
type. Supernode is particularly useful for passing informa-
tion between connected components of a graph after it was
split by deleting a bond.

Overall architecture The model consists of two parts: the
encoder, which is invoked only once per reaction generation
and the decoder, which is sequentially invoked to generate
actions (Figure 2). At each generation step, features are
embedded using layers femb and gemb. The encoder has
Ne stacked GCN-att layers, which are invoked at the first
generation step after the embedding layers. The decoder has
Nd stacked GCN-att layers followed by final linear layers
that output action probabilites for atom and bond actions
as follows. Let m = Ne +Nd for the first generation step
and m = Nd for the other generation steps. The logits La

and Lb for atom actions Acta and bond actions Actb are
calculated as follows:

Rd 3 Fi = σr(gatom(Hm
i )) (8)

R|Acta| 3 La
i = g′atom(Fi) (9)

Rd 3 Ji = σr(gbond(Hm
i )) (10)

Rd+a 3 J ′ij = σr(Ji + Jj ‖ Ai,j) (11)

R|Actb| 3 Lb
ij = g′bond(J ′ij) (12)

We reuse the hyperparameter value d for simplicity. To
acquire the final action probabilties, we apply softmax ac-

tivation function to concatenated vectors of logits of all
possible atom actions Acta and possible bond actions Actb.
To decide which actions are legal, we use the following
rules:

• Stop action can be predicted only by the supernode

• All other atom actions can be predicted by all nodes
except the supernode.

• Bond actions can be predicted for indices i and j,
where i < j and nodes at i and j are atoms

Retaining generation state Finally, we want our model
to be stateful, that is to be able to take advantage of the
information about the previous generation steps to predict
the next action. We achieve this by storing the outputHm

s of
the last GCN-att layer at the generation step s and merging it
with the embedded inputH0

s+1 at step s+1: Rh 3 H0
s+1 :=

max(H0
s+1, H

m
s ), where max is the piecewise maximum

of vectors. In Hm
s , we zero-pad features for any node that

was added to the graph at step s.

3. Experiments
We run experiments on the standard retrosynthesis bench-
mark USPTO-50k (Lowe, 2012; Schneider et al., 2016). We
begin by introducing the experimental setting.

3.1. Experimental setting

Tasks We evaluate the models on retrosynthesis. The goal
in retrosynthesis is to predict the set of reactants based on
the product of a reaction. The accuracy is measured by
comparing the SMILES (Weininger, 1988) representation
of the generated reactants to the SMILES representation
of the ground truth reactants. Before the comparison, we
remove any mapping information from the SMILES strings
and canonicalize them using RdKit (Landrum). We use top
K accuracy computed on the reactions from the test set as
the main evaluation metric.

Data We use the USPTO-50k data set of approximately
50000 reactions, which was collected by Lowe (2012) and
classified into 10 reaction types by Schneider et al. (2016).
We use the same processed version of the data set as Co-
ley et al. (2017), where each reaction consists of a single
product molecule and a set of one or more reactants, with
corresponding atoms between the reactants and the product
mapped. Following other studies, we assign each reaction
randomly to one of the training/validation/test sets with
respective probabilities of 80%/10%/10%.

Gradient-based training of MEGAN In contrast to Do
et al. (2019) who use reinforcement learning to train their
model, we back-propagate directly through the maximum
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likelihood objective to train MEGAN. This is nontrivial, as
computing the gradient of the likelihood objective requires
defining a fixed ordering of actions (You et al., 2018b). To
solve this issue, You et al. (2018b) enumerates atoms using
breadth-first search. We adapt a similar idea to reaction gen-
eration. We use the mapping provided in the USPTO-50k
data set, which describes atom correspondence between the
product and the substrates, to predetermine an ordering of
actions. This provides supervision for each generation step
and thus enables us to compute the gradient. We provide
the remaining details in the Supplement.

Other training and evaluation details of MEGAN For
training, we use batch size of 4 reactions. We use
Adam (Kingma & Ba, 2014) with the initial learning rate of
0.0001. We use warm-up, increasing the learning rate from
0 to 0.0001 over the first 10000 training steps. For efficiency,
we compute the validation loss on a subset of 2500 valida-
tion samples after each 10000 training samples. We multiply
the learning rate by 0.1 if the estimated validation loss has
not decreased for more than 4 such validation checks. We
stop the training after the estimated validation loss has not
decreased for more than 8 validation checks. We adapt the
hyperparameters based on the validation loss. The final
hyperparameter values are described in the Supplement.

Following other studies, we run two variants of training:
one with unknown reaction type and one for which reaction
type is given as a prior by an additional embedding layer.
For both runs, we use the same model architecture and the
same training setup. The training takes approximately 8
hours on a single Nvidia Tesla V100 GPU for both variants.

We use beam search (Graves, 2012) on output probabilities
of actions to generate multiple ranked candidates for each
product. We set the maximum number of steps to 16 and the
beam width to 50, as it is the largest K for which accuracy
was reported for the baseline models. Running predictions
with the beam width of 50 on the test set of USPTO-50k
(5155 test products) takes about 45 minutes on a single
Nvidia Tesla V100 GPU.

Baselines We compare performance of MEGAN with sev-
eral template-free and template-based models, including
current state-of-the-art methods. Seq2seq (Liu et al., 2017)
and Transformer (Karpov et al., 2019) are both template-
free methods based on machine translation models applied
on SMILES strings. G2G (Shi et al., 2020) (concurrent
work) is also a template-free model based on modifying
molecular graphs, with a separate module for predicting
reaction center. Retrosim (Coley et al., 2017) uses reaction
fingerprint to select template based on similar reactions in
the data set. Neuralsym (Segler & Waller, 2017) uses a
multi-linear percceptron to rank templates. GLN (Dai et al.,
2020) employs a graph model that assesses when rules from
templates should be applied.

Table 1. Top-k test accuracy on the USPTO-50k data set. Results
of other methods taken from Dai et al. (2020) and Shi et al. (2020)

METHODS
TOP-K ACCURACY %

1 3 5 10 20 50

REACTION TYPE UNKNOWN

TRANS 37.9 57.3 62.7 / / /
RETROSIM 37.3 54.7 63.3 74.1 82.0 85.3

NEURALSYM 44.4 65.3 72.4 78.9 82.2 83.1
G2GS 48.9 67.6 72.5 75.5 / /
GLN 52.5 69.0 75.6 83.7 89.0 92.4

MEGAN 47.6 71.2 79.5 87.0 91.4 94.2

REACTION TYPE GIVEN AS PRIOR

SEQ2SEQ 37.4 52.4 57.0 61.7 65.9 70.7
RETROSIM 52.9 73.8 81.2 88.1 91.8 92.9

NEURALSYM 55.3 76.0 81.4 85.1 86.5 86.9
G2GS 61.0 81.3 86.0 88.7 / /
GLN 64.2 79.1 85.2 90.0 92.3 93.2

MEGAN 61.6 83.7 89.2 93.2 95.3 96.6

3.2. Results

Table 1 reports results on the USPTO-50k benchmark in
a variant with and without reaction type information. For
the top ranked prediction (K = 1), MEGAN is surpassed
only by GLN when reaction type is given and by GLN and
G2Gs when reaction type is unknown. For K > 1, our
model achieves state-of-the-art accuracy, outperforming all
baselines in both settings.

We hypothesize that the advantage of MEGAN for K > 1
stems largely from the fact that MEGAN generates reaction
as a sequence of edits. This might help to efficiently search
through different plausible reaction centers, hence covering
a more diverse subset of the reaction space. It can also
enable MEGAN to achieve high coverage of the reaction
space, which is indicated by Top 50 accuracy of 94.2% when
reaction type is unknown and 96.6% when reaction type is
provided.

4. Conclusions
In this work, we presented the Molecule Edit Graph At-
tention Network (MEGAN), a template-free model that
achieves state-of-the-art performance on retrosynthesis. The
key idea is to generate reaction as a sequence of edits. We
hypothesize that this enables generating more diverse pre-
dictions by a more efficient search through the space of
plausible reactions.

To train our model efficiently, we used heuristically com-
puted reaction mapping to define an order of actions. An
interesting topic for the future would be to combine gradient-
based training with reinforcement learning to reduce the
reliance of MEGAN on mapping.
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Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò,
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5. Supplementary Material
5.1. Featurization

We featurize atoms and bonds with one-hot encoded vectors
of features calculated using RdKit (Landrum). We select
features that allow for correct reconstruction of all prod-
ucts and substrates from the USPTO-50k development set.
In Tables 2 and 3 we present all used features and their
possible values. We concatenate one-hot feature vectors
to gain the final input representation of atoms and bonds
HOH ∈ Z≥0n×hOH and AOH ∈ Z≥0n×n×aOH . During
evaluation, if an unknown feature value is seen (for instance,
BOND TYPE=QUADRUPLE), we set the one-hot vector for
this feature to zeros. For supernodes, all one-hot feature
vectors are set to zeros, apart from vectors for the features
IS SUPERNODE and BOND TYPE. We connect each atom
with itself with a special bond of type SELF. For non-
neighboring atoms at i and j we set AOH

ij = ~0.

For both atoms and bonds, we add a special IS EDITED fea-
ture that marks all bonds and atoms that have been modified
by actions. This aims to help the decoder to focus on these
atoms and bonds, as they are the most probable candidates
for the next generation steps.

5.2. Graph edit actions

In Table 6 we show all possible graph actions. The actions
were found during the generation of the training samples,
which we describe in the next paragraph. The actions have
different sets of parameters, depending on the action type.

For EditAtom, the action parameters are the atom properties
that are changed by the action. Note that a single EditAtom
action sets all these properties to the specified values. For
instance, action number 1, when executed on an atom, sets
its formal charge to 0, chiral tag to None, number of explicit
Hydrogen atoms to 1 and marks it as aromatic. EditBond
acts similarly to EditAtom but edits properties of a bond
instead of an atom. AddAtom adds a new atom with specified
features, connected to an existing atom with a bond with
specified features. AddBenzene appends a benzene ring
to a specified carbon atom and has no parameters. Stop
terminates reaction generation and also has no parameters.

BondEdit actions are bond actions, that is they are predicted
for a pair of atoms. All other types of actions are atom
actions and are predicted for a single atom in the graph.

5.3. Generating training samples

For each reaction from the development set, we generate
training samples by finding actions that lead from the target
molecule to the reactants. At first, we remap the reaction
to a canonical form so that the atom map numbers corre-
spond to to the order of atoms in the canonical SMILES of

the compounds. We construct the target graph T and the
reactants graph R, using features from Tables 2 and 3. We
also initialize the stack of edited atoms S = {}, which is
used for drawing candidate atoms for actions, prioritizing
depth-first generation. At each step, we execute the first
possible action for the concatenated lists of candidate atoms
S ‖ M(T ), where M(T ) is the list of all atoms from the
target ordered by their mapping numbers. After each step,
we push the modified atoms to the stack S. If there is more
than one possible action to perform on a selected atom i or
atom pair i, j, we use the following priority of actions Π:

• Action that deletes the existing bond between i, j

• Any action that adds a bond between i, j

• Any action that edits the existing bond between i, j

• Any action that edits the existing atom i

• Any action that adds a benzene ring to i

• Any action that adds an atom to i

where bond deletion has the highest priority. The aim is
to prioritize actions that are usually the hardest (such as
deleting a bond, which usually means finding the reaction
center) or logically follow each other (editing a neighboring
bond and/or atom often follows bond deletion or addition).
The training reaction generation is described in Algorithm 1.

5.4. Hyperparameter search

Table 4 shows the hyperparameter values used for the fi-
nal models. We found them heuristically by observing the
validation loss when training with unknown reaction type.
We tried increasing Ne to 8, as well as K to 12 and h to
1440 but we did not see a decrease in validation error. We
also wanted the decoder to be as small as possible, as it is
invoked multiple times during the reaction generation. We
found that Nd = 2 is sufficient to achieve the best accuracy
and increasing it lead to faster overfitting. The total number
of learnable parameters in the model is approximately 9.8
million.
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Table 2. Features of atoms
NAME POSSIBLE VALUES DIM

IS SUPERNODE YES, NO 2
ATOMIC NUM-
BER

5, 6, 7, 8, 9, 12, 14, 15, 16,
17, 29, 30, 34, 35, 50, 53

16

FORMAL
CHARGE

-1, 0, 1 3

CHIRAL TAG NONE, @, @@ 3
NUMBER OF
EXPLICIT HS

0, 1, 2, 4 4

IS AROMATIC YES, NO 2
IS EDITED YES, NO 2

TOTAL 32

Table 3. Features of bonds
NAME POSSIBLE VALUES DIM

BOND TYPE SUPERNODE, SELF, SINGLE,
DOUBLE, TRIPLE, AROMATIC

6

BOND STEREO NONE, Z, E 3
IS EDITED YES, NO 2

TOTAL 11

Table 4. Final model hyperparameter values
h a d K Ne Nd TOTAL PARAMS

1024 128 128 8 6 2 ~9.8MIL

Table 5. USPTO-50k data set information
# TRAIN # VALID # TEST # TOTAL
39662 5199 5155 50016

Algorithm 1 Generating training samples for a reaction
Input: target graph T , reactants graph R
Initialize S := {} (empty list)
Let M(T ) = {all atoms from T ordered by mapping}
marker:
while T 6= R do

for i in S ‖M(T ) do
for P in Π do

for a in P do
if a is an atom action then

if applying a to i leads to R then
generate training sample (T, a)
apply action a to atom i in T
S := {i} ‖ S
go to marker

end if
else if a is a bond action then

for j in S ‖M(T ) do
if applying a to i, j leads to R then

generate training sample (T, a)
apply action a to atoms i, j in T
S := {j, i} ‖ S
go to marker

end if
end for

end if
end for

end for
end for

end while
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Table 6. All graph actions found on the USPTO-50k development set

EditAtom

FORMAL CHARGE CHIRAL TAG NUM OF EXPLICIT HS IS AROMATIC

0 NONE 1 YES 1
+1 NONE 0 NO 2
0 @@ 1 NO 3
0 NONE 0 NO 4
0 @ 1 NO 5
-1 NONE 0 NO 6
0 NONE 0 YES 7
0 @ 0 NO 8
0 @@ 0 NO 9
-1 NONE 0 YES 10
0 NONE 1 NO 11

EditBond

BOND TYPE BOND STEREO

NONE (DELETE BOND) / 12
SINGLE NONE 13
TRIPLE NONE 14

DOUBLE NONE 15
DOUBLE Z 16
DOUBLE E 17

AROMATIC NONE 18

AddAtom

ATOMIC
NUM

FORMAL
CHARGE

CHIRAL
TAG

NUMBER
OF EXP HS

IS
AROMATIC

BOND
TYPE

BOND
STEREO

35 0 NONE 0 NO SINGLE NONE 19
6 0 NONE 0 NO SINGLE NONE 20
8 0 NONE 0 NO DOUBLE NONE 21
6 0 NONE 0 YES SINGLE NONE 22
8 0 NONE 0 NO SINGLE NONE 23

17 0 NONE 0 NO SINGLE NONE 24
7 0 NONE 0 NO SINGLE NONE 25

16 0 NONE 0 NO SINGLE NONE 26
53 0 NONE 0 NO SINGLE NONE 27
8 –1 NONE 0 NO SINGLE NONE 28
5 0 NONE 0 NO SINGLE NONE 29
9 0 NONE 0 NO SINGLE NONE 30

15 +1 NONE 0 NO SINGLE NONE 31
7 +1 NONE 0 NO SINGLE NONE 32

50 0 NONE 0 NO SINGLE NONE 33
14 0 NONE 0 NO SINGLE NONE 34
7 +1 NONE 0 NO DOUBLE NONE 35
7 –1 NONE 0 NO DOUBLE NONE 36

29 0 NONE 0 NO SINGLE NONE 37
16 +1 NONE 0 NO SINGLE NONE 38
12 +1 NONE 0 NO SINGLE NONE 39
15 0 NONE 0 NO SINGLE NONE 40
6 0 @@ 1 NO SINGLE NONE 41

30 +1 NONE 0 NO SINGLE NONE 42
30 0 NONE 0 NO SINGLE NONE 43
6 0 NONE 0 NO DOUBLE NONE 44

15 0 NONE 0 NO DOUBLE NONE 45
16 0 NONE 0 NO DOUBLE NONE 46
7 0 NONE 0 NO DOUBLE NONE 47

12 0 NONE 0 NO SINGLE NONE 48
6 0 @@ 0 NO SINGLE NONE 49
6 0 @ 1 NO SINGLE NONE 50
6 0 NONE 0 NO DOUBLE E 51
6 0 NONE 0 YES AROMATIC NONE 52

AddBenzene / 53

Stop / 54


