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Abstract
The prosperous development of e-commerce has
spawned diverse recommendation systems. As
a matter of fact, there exist rich and complex in-
teractions among various types of nodes in real-
world recommendation systems, which can be
constructed as heterogeneous graphs. How learn
representative node embedding is the basis and
core of the personalized recommendation system.
Meta-path is a widely used structure to capture
the semantics beneath such interactions and show
potential ability in improving node embedding. In
this paper, we propose Heterogeneous Graph neu-
ral network for Recommendation (HGRec) which
injects high-order semantic into node embedding
via aggregating multi-hops meta-path based neigh-
bors and fuses rich semantics via multiple meta-
paths based on attention mechanism to get com-
prehensive node embedding. Experimental results
demonstrate the importance of rich high-order se-
mantics and also show the potentially good inter-
pretability of HGRec.

1. Introduction
In the era of information explosion, the recommender sys-
tem has become one of the most effective ways to help users
to discover what they are interested in enormous data. Gen-
erally speaking, the recommender systems usually follow
two steps: learn vectorized representations (aka. embed-
dings) of users and items and then model interactions among
them (e.g., whether a user buy an item). Collaborative fil-
tering (CF) learns node embedding based on the historical
interactions on user-item bipartite graph and performs item
recommendation based on the parameters.

As a matter of fact, there exist diverse relations among
various types of nodes (e.g., buy relation and social relation)
in real-world recommendation scenario, also widely known
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as heterogeneous graph (Shi et al., 2017). Taking the dataset
Movielens as an example, it contains three types of nodes
include movie, user and genre. Meta-path (Sun et al., 2011),
a composite relation connecting two objects, is a widely
used structure to capture the semantics. The semantics
revealed by different meta-paths are able to describe the
characteristics of nodes from different aspects. For example,
meta-path User-Movie (U-M) describes the preference of
user, while meta-path User-User (U-U) describes social
influence among users. Besides basic meta-path, multi-
hop meta-path (e.g., U-U-U) which captures high-order
semantics and enrich the connections among users is able
to improve the node embedding and alleviate the cold-start
problem.

Based on the above analysis, when designing heterogeneous
graph neural network for recommendation, we need to ad-
dress the following requirements.

• Heterogeneity of graph. The heterogeneity is an in-
trinsic property of heterogeneous graph, i.e., various
types of nodes and edges. How to handle such complex
structural information for recommendation is an urgent
problem that needs to be solved.

• High-order semantic preservation. High-order se-
mantic information which captures diverse long-term
dependencies among nodes plays the key role in im-
proving node embedding and alleviating the cold-start
problem in recommender system. How to inject high-
order semantic into node embedding is a fundamental
problem in recommender system.

• Rich semantics fusion. Different meaningful and
complex semantic information are involved in hetero-
geneous graph, which are usually reflected by diverse
meta-paths. For example, meta-path U-M and U-U
can describe the preference and social influence of user
and then comprehensively describe the characteristics
of user from different aspects. How to select the most
meaningful meta-paths and fuse rich semantics to im-
prove node embedding is an open problem.

In this paper, we propose Heterogeneous Graph neural net-
work for Recommendation, named HGRec, which mainly
considers high-order semantic preservation and rich seman-
tics fusion. Specifically, semantic aggregation layer injects
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high-order semantic into node embedding via multi-hop
meta-path and semantic fusion layer fuse rich semantics re-
vealed by multiple meta-paths. After that, the overall model
can be optimized via back propagation in an end-to-end
manner.

The contributions of our work are summarized as follows:

• We highlight the critical importance of rich high-order
semantics in improving node embedding for recom-
mendation system.

• We propose a heterogeneous graph neural network
based recommendation system, which explicitly injects
high-order semantic into node embedding via multi-
hops meta-path and fuses rich semantics via multiple
meta-paths for comprehensive node embedding.

• Empirical studies on real-world heterogeneous graphs
demonstrate the state-of-the-art performance of HGRec
and potentially good interpretability for the recommen-
dation results.

2. METHODOLOGY
In this section, we present the proposed model
Heterogeneous Graph neural network for Recommendation
(HGRec). The basic idea of HGRec is to learn representative
node embedding of users and items by injecting and fus-
ing high-order semantics. The proposed HGRec first adopts
embedding layer to initialize node embedding. Then, seman-
tic aggregation layer and semantic fusion layer will inject
high-order semantic into node embedding via multi-hops
meta-path and fuses rich semantics via multiple meta-paths,
respectively. Lastly, we leverage the fused embedding of
user and item for recommendation.

2.1. Embedding Initialization

Following the previous works (He et al., 2017; Wang et al.,
2019), we random initialize node embedding matrix and use
look-up to get the initial embedding of user u and item i,
denoted as eu ∈ Rd and ei ∈ Rd, respectively. Here d is
the dimension of node embedding.

2.2. Semantic Aggregation Layer

After obtain initial node embedding, we propose semantic
aggregating layer to aggregate multi-hops meta-path based
neighbors and update node embedding, so the high-order
semantic information is well preserved. For clearly, we first
introduce the first-order aggregation in semantic aggregation
layer and then generalize it to multiple successive layers
(aka. high-order semantic aggregation).

First-order Semantic Aggregation Taking one user u and
one user-related meta-path ΦU as an example, we propose

semantic aggregation layer A to aggregate meta-path based
neighbors NΦU

u and get the first-order user embedding
eΦU ,1
u , shown as follows:

eΦU ,1
u = A(u,ΦU ). (1)

Rather than simple neighbor combination, we consider the
complex interaction between node and its neighbors in ag-
gregating process. Specifically, we encode the interaction
between node u and its neighbor k into aggregating process
via ek � eu, where � denotes the element-wise product.
The overall aggregating process is shown as follows:

eΦU ,1
u = WΦU

1 eu+
∑

k∈NΦU
u

(
WΦU

1 ek + WΦU

2 (ek � eu)
)
,

(2)
where WΦU

1 ,WΦU

2 are weight matrixes. The first-order
semantic aggregation only aggregates one-hop meta-path
based neighbors into node embedding, while high-order
semantic revealed by multi-hops meta-path plays a crucial
role in improving node embedding.

High-order Semantic Aggregation Considering the high-
order semantic revealed by multi-hops meta-path, we stack
first-order semantic aggregation for multiple layers and re-
currently aggregate corresponding meta-path based neigh-
bors, so the high-order semantic is injected into node em-
bedding, shown as follows:

eΦU ,L
u = AL(· · · A2(A1(u,ΦU ))), (3)

where eΦU ,L
u denotes the L-order user embedding. Then,

we concatenate different order user embedding and get the
semantic-specific embedding of user u, shown as follows:

eΦU

u = eΦU ,1
u ||eΦU ,2

u ||, · · · , ||eΦU ,L
u , (4)

where || is the concatenation operation. However, one meta-
path cannot comprehensively describe the characteristics
of node from different aspects. Considering a set of user-
related meta-paths {ΦU

1 ,Φ
U
2 , · · · ,ΦU

K1
}, we can get K1

groups of user embeddings {EΦU
1

u ,E
ΦU

2
u , · · · ,E

ΦU
K1

u }.

Similar to user embedding, given a set of item-related meta-
paths {ΦI

1,Φ
I
2, · · · ,ΦI

K2
}, we can get K2 groups of item

embeddings {EΦI
1

i ,E
ΦI

2
i , · · · ,E

ΦI
K2

i }.

2.3. Semantic Fusion Layer

After obtaining multiple higher-order node embedding, we
need to learn the importance of different meta-paths and
fuse them properly for better recommendation. Given K1

groups of user embeddings {EΦU
1

u ,E
ΦU

2
u , · · · ,E

ΦU
K1

u }, we
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propose semantic fusion layer F to learn the weights of
different meta-paths (e.g., wΦU

1 , wΦU
2 , · · · , wΦU

K1 ), shown
as follows:

(wΦU
1 , wΦU

2 , · · · , wΦU
K1 ) = F(E

ΦU
1

u ,E
ΦU

2
u , · · · ,E

ΦU
K1

u ).
(5)

To learn the importance of each meta-path (e.g., αΦU
k

), we
first project node embedding into the attention space and
then use a semantic attention vector qU to measure the
importance of meta-path specific embedding,

αΦU
k

=
1

|V |
∑
i∈V

q>U · tanh
(
WU · e

ΦU
k

u + bU

)
, (6)

where WU and bU are weight and bias, respectively. Then,
we normalize them via softmax function and get meta-path
weights wΦU

k
, shown as follows:

wΦU
k

=
exp

(
wΦU

k

)
∑K1

k=1 exp
(
wΦU

k

) . (7)

With the learned weights as coefficients, we can fuse mul-
tiple user embeddings to obtain the final embedding Eu as
follows:

Eu =

K1∑
k=1

wΦU
k
·EΦU

k
u . (8)

Similar to user embedding, we can fuse K2 groups of item

embeddings {EΦU
1

i ,E
ΦU

2
i , · · · ,E

ΦU
K2

i } and obtain the final
embedding of item Ei.

2.4. Model Prediction

The final part of the model is to recommend items for users
based on their embedding. Here we calculate the inner
product of user and item for recommendation, as follows:

ŷui = (Eu)>Ei. (9)

Then, we calculate BPR loss (Wang et al., 2019) and opti-
mize the parameters, as follows:

L =
∑

(u,i,j)∈O

− lnσ (ŷui − ŷuj) + λ ‖Θ‖22 , (10)

where O = {(u, i, j)|(u, i) ∈ R+, (u, j) ∈ R−} denotes
the pairwise training data,R+ indicates the observed inter-
actions, R− is the unobserved interactions, Θ denotes all
trainable model parameters, and λ controls the L2 regular-
ization strength to prevent overfitting.

Table 1. Statistics of the datasets.
Datasets Relation(A-B) #A #B #A-B

Movielens
User - Movie 943 1,682 100,000
User - User 943 943 47,150
Movie - Genre 1,682 18 2,861

Amazon

User - Item 6,170 2,753 195,791
Item - Category 2,753 22 5,508
Item - Brand 2,753 334 2,753

Yelp

User - Item 16,239 14,284 198,397
User - User 16,239 16,239 158,590
Item - City 14,284 47 14,267

Table 2. Overall Performance Comparison

Model Movielens
Pre@10 Rec@10 NDCG@10 HR@10

BMF 0.3251 0.2096 0.4081 0.8928
NMF 0.1704 0.1163 0.2336 0.7739
GAT 0.2068 0.1210 0.2556 0.7548
MCRec 0.3310 0.2129 0.2624 0.9025
NGCF 0.3369 0.2179 0.4178 0.9045
HGRec- 0.3670 0.2412 0.4551 0.9172
HGRec 0.3667 0.2405 0.4547 0.9193
%Improv. 6.70% 6.80% 8.19% 1.36%

3. EXPERIMENTS
We conduct experiments on three heterogeneous graphs:
Amazon, Yelp and Movielens (details are shown in Table
1). We compare with some state-of-art baselines, include
BPRMF (Rendle et al., 2009), NMF (He et al., 2017), GAT
(Veličković et al., 2018), MCRec (Hu et al., 2018), NGCF
(Wang et al., 2019), to verify the effectiveness of the pro-
posed model. We also test a variant of HGRec, denotes
as HGRec-, which assigns the same importance to each
meta-path.

For evaluation, we split datasets into training set and test
set with 8:2 ratio and employ Pre@10, Recall@10, HR@10
and NDCG@10 as evaluation metrics.

We randomly initialize parameters and optimize models
with Adam. For the proposed HGRec, we set the L2 regu-
larization to 1e-2, the dimension of the semantic attention
vector q to 64, the dropout to 0.8, and the learning rate to
5e-4, 1e-3 and 5e-3 on Movielens Amazon and Yelp, respec-
tively. We also use early stopping with a patience of 100 to
aviod overfitting.

3.1. Overall Performance Analysis

The experiment results are shown in Table 2 and we have
the following observations:.

• The proposed HGRec consistently performances better
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Models Amazon
Pre@10 Rec@10 NDCG@10 HR@10

BMF 0.0490 0.0881 0.1176 0.3232
NMF 0.0168 0.0264 0.0463 0.1371
GAT 0.0410 0.0810 0.1096 0.2998
MCRec 0.0309 0.0697 0.1131 0.3027
NGCF 0.0495 0.0870 0.1150 0.3224
HGRec- 0.0553 0.0988 0.1313 0.3503
HGRec 0.0588 0.1054 0.1384 0.3746
%Improv. 5.95% 6.26% 5.13% 6.48%

Models Yelp
Pre@10 Rec@10 NDCG@10 HR@10

BMF 0.0039 0.0287 0.0150 0.0291
NMF 0.0012 0.0264 0.0233 0.0398
GAT 0.0038 0.0240 0.0171 0.0363
MCRec 0.0031 0.0531 0.0201 0.0432
NGCF 0.0073 0.0410 0.0271 0.0667
HGRec- 0.0076 0.0433 0.0237 0.0506
HGRec 0.0078 0.0447 0.0310 0.0671
%Improv. 6.41% 3.13% 12.6% 1.03%

than baselines with significant gap on all the datasets. In par-
ticular, HGRec improves over the strongest baseline NGCF
w.r.t. Recall@10 by 6.80%, 17.49%,3.13% in Movielens
Amazon and Yelp, respectively. The results demonstrate that
injecting rich high-order semantics into the node embedding
indeed improves the recommendation performance.

• Compare HGRec with HGRec- , we can observe that
HGRec outperforms HGRec- on all datasets. This proves
that the semantic fusion layer is able to identify the impor-
tance of meta-paths and then enhance the performance of
HGRec.

• Graph neural network based recommendation models
show their superiorities over traditional MF based mod-
els, demonstrating the importance of nonlinear structural
interactions among nodes.

Effect of Layer Numbers. To investigate the whether
high-order semantic improves node embedding, we vary
the model depth (e.g., L = 1, 2, 3, 4) and show the results
on Table 3. We can find that with the growth of model

Table 3. Effectiveness of Layer Number

L Movielens Amazon
Rec@10 NDCG@10 Rec@10 NDCG@10

1 0.2390 0.4506 0.0947 0.1251
2 0.2391 0.4526 0.0864 0.1151
3 0.2405 0.4547 0.1054 0.1384
4 0.2391 0.4513 0.0743 0.1064

depth, the performance of HGRec are sustainable growth
and achieves the best performance when L is set to 3, indi-
cating the effectiveness of high-order semantic. After that,
the performance of HGRec starts to degenerate which may
because of overfitting.

4. Conclusion and Future Work
In this work, we highlight the critical importance of rich
high-order semantics in improving node embedding for bet-
ter recommendation. Specifically, we design a semantic
aggregation layer which aggregates multi-hop meta-path
neighbors so as to inject high-order semantic into node
embedding. To describe the characteristics of node compre-
hensively, we leverage a semantic fusion layer to fuse rich
semantic revealed by multiple meta-paths. Experimental
results demonstrates the superiority of the proposed model
and show the potentially good interpretability for the recom-
mendation results.
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