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Abstract
Knowledge representation learning has been com-
monly adopted to incorporate knowledge graph
(KG) into various online services. Although ex-
isting knowledge representation learning have
achieved considerable performance improvement,
they ignore high-order structure and abundant at-
tribute information, resulting unsatisfactory per-
formance on semantics-rich KGs. Moreover, they
fail to make prediction in an inductive manner
and cannot scale to large industrial graphs. To ad-
dress these issues, we develop a novel framework
called KGNN to take full advantage of knowledge
data for representation learning in the distributed
learning system. Specifically, KGNN is equipped
with GNN based encoder and knowledge aware
decoder, which aim to jointly explore high-order
structure and attribute information together in a
fine-grained fashion and preserve the relation pat-
terns in KGs, respectively. We perform extensive
experiments on three datasets for link prediction
and triplet classification task. Experimental re-
sults demonstrate the effectiveness and scalability
of the proposed KGNN framework

1. Introduction
Knowledge graph (KG) represents the heterogeneous struc-
ture of entities and their rich relations in triplets of the
form 〈head entity, relation, tail entity〉. For example in
Fig. 1, a triplet 〈Bob,work in,Apple〉 is denoted as a rela-
tion work in connecting two entities: Bob and Apple. Due
to abundant structured information, KG has attracted much
attention in many research areas, ranging from information
retrieval (Dietz et al., 2018), question answering (Huang
et al., 2019) to recommender system (Cao et al., 2019).

To flexibly incorporate such knowledge, knowledge rep-
resentation learning (Wang et al., 2017) has emerged as
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Figure 1. The example of knowledge graph.

a promising direction for knowledge completion (Lacroix
et al., 2018), alignment (Wang et al., 2018) and reason-
ing (Trivedi et al., 2017), which aims to project both entities
and relations into a low-dimensional space whilst preserving
certain information of the original graph. These methods can
be broadly classified as translational distance models (Bor-
des et al., 2013; Wang et al., 2014; Lin et al., 2015; Sun
et al., 2019) and semantic matching models (Nickel et al.,
2011; Jenatton et al., 2012; Yang et al., 2015; Trouillon
et al., 2016; Dettmers et al., 2018), which exploit distance-
based and similarity-based scoring function for knowledge
representation learning, respectively.

Although these methods have yield considerable perfor-
mance improvements to some extent, they still suffer from
several limitations. First, they process each triple inde-
pendently and abundant attributes in nodes and edges are
commonly ignored, resulting in unsatisfactory performance
on semantics-rich KGs. Second, they are inherently trans-
ductive models, which cannot make prediction for entities
unseen in the training set. Third, these methods cannot
scale to industral-scale graphs with hundreds of millions of
entities and relations.

To address these issues, in this paper, we aim to build a scal-
able and distributed knowledge graph representation frame-
work to flexibly distill rich knowledge for downstream appli-
cations. Intuitively, the framework is expected to satisfy the
following three key properties: (1) Semantics-rich: High
order structure and attribute information have been already
proved effective for preserving properties of original graphs
in previous works (Hamilton et al., 2017; Veličković et al.,
2018; Kipf & Welling, 2017). Hence, we aim to incorporate
such information into knowledge graph representation to
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comprehensively capture rich semantics in KGs. (2) In-
ductive: Current KGs are usually far from complete and
thus the new entities will appear everyday in the real-world
setting, which prompts the proposal to make prediction for
entities unseen in the training set dynamically. (3) Scal-
able: Since KGs in the real-world industrial scenarios are
extremely large-scale, a scalable knowledge graph repre-
sentation framework implemented on distributed learning
system is in urgent demand.

To integrate above main idea together, we propose KGNN, a
distributed framework for graph neural knowledge represen-
tation with graph neural network (GNN) based encoder and
knowledge aware decoder. With the help recently emerging
GNN, KGNN is potential to jointly capture attribute infor-
mation and high order structure in an inductive, end-to-end
framework. Obviously, it is a flexible framework to equip
arbitrary GNN based encoder, and in this paper, an attention
based GNN is introduce to locate the important and rele-
vant relations or structures for fine-grained semantics. In
order to perform model training and inference effectively for
real-world KGs, KGNN is implemented on the distributed
learning system and the implementation details are uncov-
ered. We make extensive experiments on three real-world
datasets on link prediction and triplet classification task,
which demonstrates the effectiveness and scalability of the
proposed KGNN framework.

2. Background
In this section, we give a brief overview of knowledge rep-
resentation learning and graph neural networks.

Knowledge representation learning. A knowledge graph
is denoted by G = {E ,R}, consisting of the entity set E and
the relation setR. A triplet 〈h, r, t〉 is defined as an relation
r between entities h and t on G, where h, r ∈ G. Learning
distributional representations of KGs provides an effective
and efficient way for applying structural knowledge in var-
ious applications. Hence, a scoring function s(eh, er, et)
is defined as the likelihood of triple 〈h, r, t〉 being a valid
triple, where eh, er, et represent the embeddings of h, r, t,
respectively. A series of scoring functions (Wang et al.,
2017) are proposed to preserve different relation patterns
of KGs, and here, we introduce the TransH based scoring
function (Wang et al., 2014), which learns different repre-
sentations for an entity conditioned on different relations.

s(eh, er, et) = ||e⊥h + er − e⊥t ||. (1)

Here, we have e⊥h = eh−wT
r ehwr and e⊥t = et−wT

r etwr,
in order to project entity embeddings into relation heper-
planes, which allows entities playing different roles under
different relations.

Graph neural network. Graph neural network (GNN)
makes use of the structure of the graph and attributes on
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Figure 2. Overview of KGNN model.

nodes for representation learning. Specifically, GNN re-
cursively update an node’s representation by aggregating
information from its neighbors. Subsequently, the final
representations of the nodes after k updating capture the
structural information as well as the node attributes within
k-hop neighbors. Formally, we can calculate the k + 1-th
representation for node v with aggregation and updating
function as follows,

ek+1
v = f (U)(ekv , f

(A)({ekv′ , v′ ∈ Nv}; Θ(A)); Θ(U)),
(2)

where f (A) and f (U) denotes the aggregation and updating
function parameterized by Θ(A) and Θ(U), respectively, and
Nv is the neighbor set of node v.

3. Methodology
In this section, we present the distributed framework for
graph neural knowledge representation, called KGNN.

3.1. KGNN Model

In this section, we introduce the model part of KGNN to
comprehensively distill knowledge graph for representation
learning in an inductive manner. We present the architecture
of our proposed KGNN in Fig. 2, which intuitively consists
of two modules: (1) GNN based encoder and knowledge
aware decoder, which flexibly utilizes the local structure
information and recursively propagates the embeddings over
KGs for expressive representations and (2) knowledge aware
decoder, which aims to preserve the relation patterns in KGs
through various types of score functions.

GNN based Encoder. Different from one-hot representa-
tion in previous works, we propose to adopt graph neural
network to encode structural knowledge and attributes into
entities’ representations. For fine-grained modeling , we
introduce an attention based GNN to weighs various under-
lying preference for each relation. Following the above up-
dating principle of entity representations in Eq. 2, we firstly
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Figure 3. Overview of distributed KGNN framework.

formulate the aggregation function f (A)(·) as follows:

f (A)({ekt , t ∈ N k
h }) =

∑
r,t∈Nh

α(h, r, t)ekt . (3)

Here, α(h, r, t) is the attention value for the triple 〈h, r, t〉,
which is implemented as a neural network. And N k

h =
{(r, t)|(h, r, t) ∈ G} is the k-hop neighbor set for entity h.

Inspired by the idea jumping knowledge network (Xu et al.,
2018), we adopt an adaptive depth function to flexibly mul-
tiple hops of neighbors for better structure-aware represen-
tation. Here, an LSTM is applied to implement f (U)(·)
for representation updating. Therefore, we can obtain the
k + 1-th representation for entity h as follows:

ek+1
h = LSTM(ekh, a

k
h), (4)

where akh denotes the aggregated information for entity h,
calculated by Eq. 3.

Knowledge aware decoder. The key of link prediction in
KGs is to infer the relation patterns e.g., symmetry, inversion
and composition with observed triplets (Sun et al., 2019).
In order to adaptively preserve different relation patterns
on various KGs, KGNN adopts knowledge aware score
function as the decoder. Take the TransH as an example,
we represent the score function for a triple 〈h, r, t〉 after
K-hop updating as s(eKh , er, e

K
t ). Then, we train KGNN in

an end-to-end fashion via the margin based objective with
negative sampling:

L =
∑

〈h,r,t〉∈G,〈h′,r,t′〉∈G′

[s(eKh , er, e
K
t )+λ−s(eKh′ , er, e

K
t′ )]+,

(5)

Table 1. Statistics of data sets.
Dataset # Ent. # Rel. # Trip. # Attr.
WN18 40, 943 18 151, 442 N.A.
FB15K 14, 951 1, 345 592, 213 N.A.
Alipay 2.6× 105 6 1.28× 106 504

where [·] = max(0, ·), and G′ is the set of incorrect triplets
constructed by randomly replacing head entity or tail entity
in a valid triplet.

3.2. Distributed Implementation

We now zoom into the distribution implementation of
KGNN, which provide a complete solution for large-scale
knowledge graph representation. As shown in Fig. 3, the
distributed KGNN is comprised of three parts:

• Graph storage system. It stores the whole knowledge
graph as well as corresponding attributes information
on nodes under the distributed architecture. With the
help of the effective data compression technology, it is
capable of serving large-scale industrial graphs.

• Sampler. It mainly provides negative sampler and sub-
graph sampler for knowledge representation. In par-
ticular, the negative sampler randomly replaces head
entity or tail entity in a batch of valid triplets for cor-
responding corrupted triplets. And then, sub-graph
sampler will randomly collect k-hop neighbors set for
each entity in batch. It is worth noting that we feed the
sub-graph into KGNN instead of the full graph, which
helps reduce the time and memory cost.

• Trainer. It consisting of several workers and parame-
ter servers, controlled by the coordinator. For effective
parameter updating, each work pulls parameters from
a parameter server and update them independently dur-
ing training. In a specific worker, KGNN naturally fol-
lows such a work flow: (1) Pre-process the sub-graph
and parse the model config. (2) Produce embeddings
for entities and relations based on sub-graph with our
encoder and decoder introduced in Sec. 3.1. (3) Opti-
mize a certain loss to guide the learning process.

4. Experiments
In this section, we evaluate the effectiveness of KGNN for
link prediction and triplet classification task.

Datasets and evaluation metrics. We evaluate our pro-
posed framework on three datasets (Lin et al., 2015), namely
WN18, FB15K and industrial AliPay dataset. The detailed
descriptions of the three datasets are summarized in Tab. 1.
We perform link prediction on WN18 and FB15K, while
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Table 2. Evaluation results on link prediction. (%)
Methods WN18 (HR@k) FB15K (HR@k)

1 3 10 1 3 10
TransE 70.8 89.6 94.7 64.4 84.0 95.9
TransR 65.5 83.7 92.7 63.6 82.3 95.2
TransH 72.3 90.6 94.9 64.5 84.1 95.9

DistMult 69.3 89.9 94.6 65.2 84.6 96.5
KGNN 78.9 96.9 98.8 67.4 86.4 96.8

apply triple classification on WN18, FB15K and AliPay
dataset. Following the same setting in (Bordes et al., 2011;
2013), we adopt hit ratio at rank k (HR@k) and area under
ROC curve (AUC) to evaluate the model performance of
link prediction and triplet classification, respectively.

Table 3. AUC comparison results on triplet classification. (%)
Methods WN18 FB15K Alipay
TransE 91.7 97.5 61.0
TransR 78.6 95.8 74.9
TransH 91.7 97.4 72.6

DistMult 93.5 97.9 65.3
KGNN 94.1 99.0 84.9

Compared methods and parameter settings. We con-
sider for representative knowledge representation learning
methods for performance comparison, namely TransE (Bor-
des et al., 2013), TransR (Lin et al., 2015), TransH (Wang
et al., 2014) and DistMult (Yang et al., 2015). For fair com-
parison, we also select one of them as the decoder of KGNN
framework. We adopt Adam with learning rate = 0.001 to
optimize all models and set the batch size = 256. Moreover,
the margin is selected among {1, 2, 5} and the embedding
size is searched among {64, 128, 256}.

Performance Comparison. We report the comparison re-
sults of the proposed KGNN and baselines on link prediction
and triplet classification in Tab. 2 and Tab. 3, respectively.
We observe that KGNN consistently outperform on three
datasets for both tasks, indicating that KGNN is potential to
capture high-order structural information for more expres-
sive knowledge representations. It is worthwhile to note that
KGNN achieve significant performance improvement over
baselines on Alipay datasets. The results may correlated
with the characteristics of this dataset: (1) There are 504
attributes on entities, which are ignored by these baselines.
(2) The test set contains a part of unseen entities, while these
baselines fail to produce proper representations for them. As
a comparison, the performance of KGNN demonstrates that
KGNN is capable of jointly exploring structure and attribute
information together over KGs in an inductive manner.

Effect of the number of hops. We analyze the effect of the
number of hops on the link prediction task through varying
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Figure 4. Performance study w.r.t. the number of hops
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Figure 5. Scalability study w.r.t. the number of workers

it among {1, 2, 3, 4}. As shown in Fig. 4 , the proposed
KGNN achieve the optimal performance when # hop = 2
on WN18 and # hop = 3 on FB15K. The results indicates
high-order structure information exactly help our model
learn more powerful representations, while excessive hops
of neighbors would harm the performance due to the over-
smoothing problem (Chen et al., 2019).

Scalability study. To verify the scalability of our proposed
distributed KGNN framework, we report the updating time
per training epoch w.r.t. the number of workers in Fig. 5.
As shown, the speed up in training KGNN on WN18 and
FB15K is consistent as we increase the number of workers
from 2 to 16. Meanwhile, it also shows that there is almost
no loss of predictive performance as the number of workers
increases.

5. Conclusion
In this paper, we proposed a novel distributed framework
called KGNN for graph neural knowledge representation
with GNN based encoder and knowledge aware decoder,
which jointly exploit high-order structure and attribute in-
formation together for powerful knowledge representation
as well as preserve relation patterns in KGs. Furthermore,
an attention mechanism is introduced to emphasize impor-
tant information for fine-grained modeling. We implement
the proposed KGNN on the distributed learning system and
extensive experiments demonstrates its effectiveness and
scalability.



220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

KGNN: Distributed Framework for Graph Neural Knowledge Representation

References
Bordes, A., Weston, J., Collobert, R., and Bengio, Y. Learn-

ing structured embeddings of knowledge bases. In AAAI,
pp. 301–306, 2011.

Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., and
Yakhnenko, O. Translating embeddings for modeling
multi-relational data. In NIPS, pp. 2787–2795, 2013.

Cao, Y., Wang, X., He, X., Hu, Z., and Chua, T.-S. Unifying
knowledge graph learning and recommendation: Towards
a better understanding of user preferences. In WWW, pp.
151–161, 2019.

Chen, D., Lin, Y., Li, W., Li, P., Zhou, J., and Sun, X.
Measuring and relieving the over-smoothing problem for
graph neural networks from the topological view. arXiv
preprint arXiv:1909.03211, 2019.

Dettmers, T., Minervini, P., Stenetorp, P., and Riedel, S.
Convolutional 2d knowledge graph embeddings. In AAAI,
pp. 1811–1818, 2018.

Dietz, L., Kotov, A., and Meij, E. Utilizing knowledge
graphs for text-centric information retrieval. In SIGIR,
pp. 1387–1390, 2018.

Hamilton, W., Ying, Z., and Leskovec, J. Inductive represen-
tation learning on large graphs. In NIPS, pp. 1024–1034,
2017.

Huang, X., Zhang, J., Li, D., and Li, P. Knowledge graph
embedding based question answering. In WSDM, pp.
105–113, 2019.

Jenatton, R., Roux, N. L., Bordes, A., and Obozinski, G. R.
A latent factor model for highly multi-relational data. In
NIPS, pp. 3167–3175, 2012.

Kipf, T. N. and Welling, M. Semi-supervised classification
with graph convolutional networks. ICLR, 2017.

Lacroix, T., Usunier, N., and Obozinski, G. Canonical tensor
decomposition for knowledge base completion. In ICML,
pp. 2869–2878, 2018.

Lin, Y., Liu, Z., Sun, M., Liu, Y., and Zhu, X. Learning
entity and relation embeddings for knowledge graph com-
pletion. In AAAI, pp. 2181–2187, 2015.

Nickel, M., Tresp, V., and Kriegel, H.-P. A three-way model
for collective learning on multi-relational data. In ICML,
pp. 809–816, 2011.

Sun, Z., Deng, Z.-H., Nie, J.-Y., and Tang, J. Rotate: Knowl-
edge graph embedding by relational rotation in complex
space. In ICLR, 2019.

Trivedi, R., Dai, H., Wang, Y., and Song, L. Know-evolve:
Deep temporal reasoning for dynamic knowledge graphs.
In ICML, pp. 3462–3471, 2017.

Trouillon, T., Welbl, J., Riedel, S., Gaussier, É., and
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