End-to-end permutation learning with Hungarian algorithm

Anonymous Authors'

Abstract

Permutations arise in many machine learning ap-
plications such as keypoint matching in computer
vision or multiple-object tracking in RADAR sig-
nal processing. A fixed-number unrolling of the
Sinkhorn iteration used with deep learning is ap-
plied to such tasks recently. We show the fact
that the fixed length-unrolling scheme inevitably
has samples that do not converge and propose the
direct use of the Hungarian algorithm by using a
straight-through estimator instead of the Sinkhorn
iteration to avoid this problem. We conduct exper-
iments to evaluate the algorithm’s performance
and show it to be comparable to or better than that
of the conventional Gumbel-Sinkhorn algorithm.

1. Introduction

The bipartite graph matching problem is embedded as a
data-association problem in many machine learning appli-
cations. In image processing, (visual) simultaneous local-
ization and mapping (SLAM) (Milz et al., 2018) includes a
data-association problem between two image pairs (Sarlin
et al., 2019), which is known as keypoint matching. For
point cloud sensors, such as RADAR or LIDAR, multiple-
object tracking (MOT) methods are used to track motions
of objects. In MOT, there is also a data-association problem
between the previous motion history and the observed point
cloud (Kawachi & Suzuki, 2020).

The bipartite graph matching problem is typically solved
using non-differentiable discrete algorithms. The solution
of this problem is equivalently expressed as a binary permu-
tation matrix, which has two constraints that row-wise and
column-wise sum to be 1 (one-to-one constraint). Row-wise
or column-wise softmax (Grover et al., 2019; Milan et al.,
2017) has been deployed in neural networks for continuous
replacements of permutation matrices and comply with one
side of the constraints. Although it is relatively easy to sat-

! Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

isfy one side of the constraints, it is hard to comply with
both sides simultaneously.

Such tasks have recently been tackled by using the Sinkhorn
iteration (Cour et al., 2007; Sinkhorn, 1964; Sinkhorn
& Knopp, 1967), which is unrolled in end-to-end neural
networks (Kawachi & Suzuki, 2020; Mena et al., 2018;
Santa Cruz et al., 2017; Sarlin et al., 2019). However,
Sinkhorn iteration includes continuous relaxation errors in
training and unrolling truncation errors caused by the fixed
number of iterations. One study involved a variable un-
rolling number of the Sinkhorn iteration controlled using a
temperature hyperparameter (Cuturi et al., 2019). However,
they reported that the number of iterations varies and may
exceed 100. As we show later, there are strictly positive
matrices that can block convergence for an arbitrary num-
ber of iterations. Therefore, the variable-length-iteration
approach may consume extra time due to a huge number of
serial iteration steps.

Furthermore, the Sinkhorn iteration is likely to have a van-
ishing gradient problem. It is often considered as the matrix
version of the softmax function because the Sinkhorn itera-
tion to an exponentiated vector is the same as the softmax
function. We show that the softmax function with temper-
ature has a vanishing gradient problem, which implies the
Sinkhorn iteration also has this problem.

To avoid these problems, we propose using the Hungarian
algorithm (Kuhn, 1955) with a straight-through estimator
(STE) (Bengio et al., 2013; Jang et al., 2016). The Hungar-
ian algorithm outputs a correct format permutation matrix
and the STE enables the use of a hard solution in neural
networks.

In this work, we show that

e conventional Sinkhorn iteration with a fixed unrolling
number may not converge and emit unnormalized so-
lutions even for strictly positive matrices. We show
that there exist some positive matrices that can delay
iteration length for convergence arbitrary.

e neural networks with a permutation layer using the
Hungarian algorithm (Kuhn, 1955) (Munkres, 1957)
which is trained using an STE achieve accurate data as-
sociation. This algorithm emits exact permutation ma-



End-to-end permutation learning with Hungarian algorithm

Figure 1. Oscillating Sinkhorn iteration patterns in 3 X 3 binary
matrices. These patterns are not covered by Sinkhorn’s theorem,
shown in (Sinkhorn, 1964), as they include zeros. Rotational
variants are omitted.

trices and avoids the problem of the unrolled Sinkhorn
iteration, which has unknown constraint tolerance. We
conduct experiments to evaluate the algorithm’s perfor-
mance and found that it is comparable to or better than
that of the conventional Gumbel-Sinkhorn algorithm
(Mena et al., 2018).

2. Limitation with conventional Sinkhorn
iteration

2.1. Non-converging samples

The Sinkhorn iteration, which converts a positive matrix
into a doubly stochastic matrix, is widely used as a contin-
uous counterpart of a permutation matrix. The Sinkhorn
iteration consists of the iteration of the pair of row-wise
normalization N,.(X) = X © (X117) and column-wise
normalization N.(X) = X © (117 X), where X denotes
the input matrix, © denotes member-wise division, and
1 is the vector that contains the row or column number
of 1s. We define the L-step unrolled Sinkhorn opera-
tor for a matrix A as S;(X) = N.(N,(X)), ST (A) =
Sp(Sp—1(---S1(A)--+)), which means an alternate row-
wise and column-wise normalization iteration procedure.
Usually, the exponent of a real-valued matrix x is used as
the input A = exp(x) to ensure positivity.

The Sinkhorn iteration converges for strictly positive matrix
input (Sinkhorn, 1964). However, it often requires infinite
iterations to converge. | We now give examples that are not
suitable for fixed-length unrolling of the Sinkhorn iteration.
If the matrix contains zeros, there are some non-converging
samples. We show some of the patterns in Fig. 1. Let us
introduce a very small positive scalar e to make this matrix
positive. Then the matrix must satisfy the Sinkhorn’s theo-
rem (Sinkhorn, 1964). We show at least this type of matrix
has a non-converging problem with fixed-length iteration.
We define the row and column direction constraint errors
for a matrix as Err.(A) = max; [1 -3, NT(I;“)](A)| and
Err,(A) = max; [1 -3, N& (A)|, respectively, where

CstsJ

NE(A) = N, (ST=D(A4)) and N (4) = SEI(A).

"For example, [[a, al, [a,b]]”,a << b requires infinite itera-
tions analytically.

We measure these errors in the Sinkhorn iteration for the
non-converging cases with e. Since the errors of one side
are always zero because of the normalization, those on the
other side are collected. We show the results in Fig. 2.

14

e=0 10
e=1e-10
—— e=1e-09
e=1e-08
10 e=1e-07
— e=1e-06

12

e=1e-05
08 £=0.0001
€=0.001

°
o

— €=0.01
— e=0.1
e=1.0

04
02
0.0

0 5 10 15 20 25 30 0 5 10 15 20 25 30
Number of iterations Number of iterations

Constraint error
°
=

Constraint error

°

°
°

1 1 1 e 1 €
@ 1 € ¢ [ 1 € 1
1 € € e 1 ¢

Figure 2. Sinkhorn iteration for non-converging patterns. Con-
straint error does not decrease for ¢ = 0 because Sinkhorn’s
theorem does not hold. Remaining error length corresponds to e
size. For any fixed unrolling number, there exists € that can block
convergence.

From the figure, we can check if the Sinkhorn’s theorem is
correct under € = 0. For € > 0 cases, however, the error
curves versus the number of iterations forms plateaus. This
phenomenon means the constraint error remains high before
the iteration reaches a certain iteration number and also the
number seems to relate to the €’s value in the graph. The
reason can be understood analytically, and we can explain
the number of iterations to converge in the second case.
The details are in Appendix D. This property is unsuitable
when fixing the unrolling number of Sinkhorn iterations in
neural networks because there remains a possibility that
unnormalized solutions may be emitted even if the input is
a strictly positive matrix.

Unnormalized solutions in the Sinkhorn iteration may be
more problematic than the continuous relaxation errors.
Continuous relaxation can be justified from the Birkoff-von
Neumann theorem (Hurlbert, 2008; Paunescu & Radulescu,
2017) as the doubly stochastic matrices (Birkoff polytope
(Baumeister & Ladisch, 2018)) are the convex hull of per-
mutations. However, unnormalized matrices go outside of
this theorem and no longer have such explanations.

2.2. Possible vanishing gradient problem

For the sigmoid function, which is a 2-class softmax func-
tion, there is a well-known vanishing gradient problem (Goh
et al., 2017) caused by the “tail” of the derivative of the func-
tion going to zero. In the softmax function with temperature,
this problem can be explained analytically (see appendix A



End-to-end permutation learning with Hungarian algorithm

for the details). This property implies that there is a van-
ishing gradient problem on the Sinkhorn iteration because
the Sinkhorn iteration can be considered as an extension
of the softmax function. This is explained by the fact that
the Sinkhorn iteration for an exponentiated vector trivially
converges at one step and is strictly the same as the softmax
function.

3. Hungarian algorithm with
straight-through estimator

To avoid the problems mentioned in the previous section,
we propose using the Hungarian algorithm with an STE.
The Hungarian algorithm emits a permutation solution of
bipartite graph matching of the following objective function
(Kuhn, 1955; Munkres, 1957):

P= arg;naxZXi,j B j, (1)
.3
s.t. Zpi’j = ].T,vj,ZPZ"j = 17VZ',PZ‘J‘ S {07 1}.
i J

2

We denote the Hungarian algorithm as an operator, P =
H(x). This algorithm does not require the iteration number
as a hyper-parameter and is free from the non-converging
problem in fixed unrolling of the Sinkhorn iteration. The
Hungarian algorithm can be viewed as a function that inputs
a matrix and outputs a permutation matrix. We treat this and
the argmax function as a pair because of the analogy of the
equivalence between the softmax function and the Sinkhorn
iteration for a vector. Therefore, the hard versions of the
softmax function and the Sinkhorn iteration, which are the
argmax function and Hungarian algorithm, are expected to
have some similarities. We can visually understand this
similarity in Appendix B. Using the Hungarian algorithm in
a neural network has a problem in that it is not differentiable.
We propose to apply an STE to this problem, which means
9H(x)

v =~ 1. In this formula, we implicitly vectorize the
X

matrices P = H(x) and . This technique is used to obtain
a hard solution of a discrete function (Jang et al., 2016).

We can obtain a doubly stochastic matrix as a posterior del-
egate of the latent permutation by taking the mean of the
permutation samples which are generated from perturba-
tions of the input matrix. This procedure is directly justified
from the Birkoff-von Neumann theorem, which declares any
doubly stochastic matrix can be obtained from an infinite
sample mean of permutation matrices.

Using Gumbel noise to obtain a doubly stochastic matrix is
one option because exploiting the Hungarian algorithm with
Gumbel noise to obtain a MAP estimator for inter-frame
keypoint matching combined with scale-invariant feature
transform (SIFT) descriptors using linear models (Li et al.,

2013) based on Perturb-and-MAP (Papandreou & Yuille,
2011) has been tested. Therefore, we add Gumbel noise to
the linear output of the neural network in the same manner
as with the conventional Gumbel-Sinkhorn algorithm (Mena
et al., 2018) in the log space. The network structure example
is shown in Fig. 5 in Appendix C.

4. Experiments

We basically conformed the Gumbel-Sinkhorn (Mena et al.,
2018) settings to implement a neural network to compare
the performances of the conventional Gumbel-Sinkhorn and
Hungarian-STE (HSTE) algorithm.? The procedure of the
experiments was as follows.

We first prepared a vector X of N sorted elements (puz-
zle pieces or numbers) then randomized the order of the
elements. This randomization is denoted as an answer per-
mutation matrix ]5, which means the input vector is x = Px.
The elements were independently fed into a neural network
consisting of functions g = g1 o go. Then each element of
x generates N row vectors of size N. We stacked the row
vectors to construct an N x N matrix. We added Gumbel
noise to this matrix, divided the matrix by the temperature
hyperparameter, and then applied the Hungarian algorithm?
H () to obtain permutation matrix P = H(g(x)). Finally,
we reconstructed the original vector by taking x = P7T - x.

The evaluation metrics were the same as those in a previous
work (Mena et al., 2018), which were categorized into two,
i.e., feature-based errors and order-based errors. Feature-
based errors can be calculated from x and X, and order-based
errors can be calculated from P and P. For feature-based
errors, we used [1 and [2 errors between the correctly or-
dered answer and reordered output. For order-based errors,
we used Prop. wrong, Prop. any wrong, and Kendall tau.
The Prop.wrong metric is the order-matching rate be-
tween two N x NN permutations P and () using a member-
wise product ®, which is expressed as Prop.wrong =
1- % > P ® Q. The Prop. any wrong metric is 0 when
Prop.wrong is 0; otherwise, 1. The Kendall tau metric
is calculated using Kendall’s tau measure (Kendall, 1945),
which is a correlation measure for orders.

4.1. MNIST jigsaw puzzle task

We compared the algorithms in the MNIST (LeCun et al.,
1998) jigsaw puzzle task used in a previous study (Mena

2Our implementation is written in pytorch, and
the details are based on https://github.com/
google/gumbel_sinkhorn and https://github.
com/HeddaCohenIndelman/Learning—Gumbel-
Sinkhorn-Permutations-w—-Pytorch

3We actually used the linear-programming version of the Hun-
garian algorithm, which is known to be equivalent. (Matousek &
Gaertner, 2007)


https://github.com/google/gumbel_sinkhorn
https://github.com/google/gumbel_sinkhorn
https://github.com/HeddaCohenIndelman/Learning-Gumbel-Sinkhorn-Permutations-w-Pytorch
https://github.com/HeddaCohenIndelman/Learning-Gumbel-Sinkhorn-Permutations-w-Pytorch
https://github.com/HeddaCohenIndelman/Learning-Gumbel-Sinkhorn-Permutations-w-Pytorch

End-to-end permutation learning with Hungarian algorithm

Table 1. Mean Kendal tau scores of MNIST zigsaw puzzle task in
evaluation set

piece size 2x2  3x3  4x4 5x5 6x6
Gumbel-Sinkhorn  1.00 0.66 0.33 0.23 0.16
Hungarian-STE 1.00 0.63 029 0.15 0.10
Table 2. Number-sorting-task mean scores
N = 15 80 100 120 200 400
Kendall tau
Sinkhorn 82 1. 1. 97 95 89

HSTE w/o noise 1. 1. 70 61 86 .86
Gumbel-Sinkhorn .88 94 8 92 .72 .59
HSTE w/ noise 1. 1. 1. 1. 96 .80

Prop. any wrong

Sinkhorn 70 .00 .10
HSTE w/o noise .00 .00 1.
Gumbel-Sinkhorn .60 1. 1.
HSTE w/ noise .00 .00 .00 .00

—_ —
—_
—

et al., 2018). We divided the input image into M x M
“pieces” i.e., N = M 2, shuffled the order, individually
input the pieces to g1, which is now a convolutional neural
network (CNN), input them to g, multi-layer perceptron
(MLP), and concatenated each M?2 size of row vectors to
construct an M?2 x M? sized matrix (see Table 3 in Appendix
C for the details of this experiment).

We first confirmed that the conventional Gumbel-Sinkhorn
algorithm has a non-converging problem. We show the con-
straint error curves in Fig. 3 using the definition of the error
in Section 2. We do not show the results for the Hungarian-
STE algorithm as the errors are trivially always zero. The
errors do not decrease to zero in any of the M x M cases.
Moreover, in higher M x M cases, there was a tendency
of the error increasing as the training progressed. A pos-
sible explanation for this phenomenon is that higher M
generates more similar pieces and the decision of permuta-

05
04
§ i / 8

T 0.04 i 503
§o02

0.1

0.0

12345678 91011121314151617181920 12345678 91011121314151617181920
Epochs Epochs

(a) Mean constraint error (b) Max. constraint error

Figure 3. Constraint error curves by epochs in conventional
Gumbel-Sinkhorn algorithm in MNIST jigsaw puzzle task

tion becomes more difficult because there should be many
equivalent permutation solutions. If the input matrix is oc-
casionally similar to the oscillation pattern mentioned in
Section 2, the output matrix may far from the format of
permutation if the fixed-length unrolling of the Sinkhorn
iteration is used.

We then evaluated the performances of the two algorithms.
The results indicate that the Hungarian-STE and Gumbel-
Sinkhorn algorithms had almost comparative results in this
task. The results are shown in Table 1 (see Table 4 in
Appendix E for full result).

4.2. Number sorting task

We then compared the algorithms in the number sorting task
also used in the previous study (Mena et al., 2018). We set
X to N real numbers drawn from an uniform distribution
U(0,1) and used MLPs as g.

The results, based on our implementation, are listed in Table
2 (See Table 5 in Appendix E for full result). It is obvious
that the Hungarian-STE algorithm with noise outperformed
the conventional Gumbel-Sinkhorn algorithm in all metrics,
especially with a high N number (see Table 3 in Appendix
C for the details of this experiment).

5. Discussion

We confirmed that a non-converging normalization problem
occurred in the experiment on the MNIST jigsaw puzzle task
with the Sinkhorn iteration and showed clear performance
improvement on the number sorting task by simply replacing
the Sinkhorn iteration with the Hungarian-STE algorithm to
avoid this problem.

The effect of adding noise differs between the (Gumbel-)
Sinkhorn and Hungarian-STE algorithms. Although the
performance of the Gumbel-Sinkhorn algorithm did not
differ whether the noise was added or not, the Hungarian-
STE’s performance largely improved by adding noise. This
result suggests that this noise reduces the effect of the error
from the gradient of the straight-through estimator by taking
the mean of the final losses, which correspond to the noise.

For the MNIST jigsaw puzzle task, the network used for
the conventional Gumbel-Sinkhorn algorithm (Mena et al.,
2018) seems too simple to model the MNIST jigsaw puzzle.
The scores may improve by searching more richer neural net-
work structures or hyperparameters, which is out-of-focus
in this work.

References

Baumeister, B. and Ladisch, F. A property of the Birkhoff
polytope. Algebraic Combinatorics, 1(2):275-281, 2018.



End-to-end permutation learning with Hungarian algorithm

Bengio, Y., Léonard, N., and Courville, A. Estimating or
propagating gradients through stochastic neurons for con-
ditional computation. arXiv preprint arXiv:1308.3432,
2013.

Cour, T., Srinivasan, P., and Shi, J. Balanced graph matching.
In Advances in Neural Information Processing Systems,
pp- 313-320, 2007.

Cuturi, M., Teboul, O., and Vert, J.-P. Differentiable sorting
using optimal transport: The Sinkhorn cdf and quantile
operator. arXiv preprint arXiv:1905.11885, 2019.

Goh, G. B., Hodas, N. O., and Vishnu, A. Deep learning
for computational chemistry. Journal of computational
chemistry, 38(16):1291-1307, 2017.

Grover, A., Wang, E., Zweig, A., and Ermon, S. Stochastic
optimization of sorting networks via continuous relax-
ations. arXiv preprint arXiv:1903.08850, 2019.

Hurlbert, G. A short proof of the Birkhoff-von Neumann
theorem. preprint (unpublished), 2008.

Jang, E., Gu, S., and Poole, B. Categorical repa-
rameterization with Gumbel-softmax. arXiv preprint
arXiv:1611.01144,2016.

Kawachi, Y. and Suzuki, T. Unsupervised auto-encoding
multiple-object tracker for constraint-consistent combi-
natorial problem. In ICASSP 2020 - 2020 IEEE Inter-
national Conference on Acoustics, Speech and Signal
Processing (ICASSP), pp. 6054-6058, 2020.

Kendall, M. G. The treatment of ties in ranking problems.
Biometrika, 33(3):239-251, 1945.

Kuhn, H. W. The Hungarian method for the assignment
problem. Naval research logistics quarterly, 2(1-2):83—
97, 1955.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-
based learning applied to document recognition. Proceed-
ings of the IEEE, 86(11):2278-2324, 1998.

Li, K., Swersky, K., and Zemel, R. Efficient feature learning
using perturb-and-map. 2013.

Matousek, J. and Gaertner, B. (eds.). Understanding and
Using Linear Programming. Springer Berlin Heidelberg,
2007.

Mena, G., Belanger, D., Linderman, S., and Snoek, J. Learn-
ing latent permutations with Gumbel-Sinkhorn networks.
arXiv preprint arXiv:1802.08665, 2018.

Milan, A., Rezatofighi, S. H., Dick, A., Reid, 1., and
Schindler, K. Online multi-target tracking using recurrent
neural networks. In Proc. AAAI 2017.

Milz, S., Arbeiter, G., Witt, C., Abdallah, B., and Yogamani,
S. Visual SLAM for automated driving: Exploring the
applications of deep learning. In The IEEE Conference
on Computer Vision and Pattern Recognition (CVPR)
Workshops, June 2018.

Munkres, J. Algorithms for the assignment and transporta-
tion problems. Journal of the society for industrial and
applied mathematics, 5(1):32-38, 1957.

Papandreou, G. and Yuille, A. L. Perturb-and-map random
fields: Using discrete optimization to learn and sample
from energy models. In 2011 International Conference
on Computer Vision, pp. 193-200. IEEE, 2011.

Paunescu, L. and Rédulescu, F. A generalisation to Birkhoff—
von Neumann theorem. Advances in Mathematics, 308:
836-858, 2017.

Santa Cruz, R., Fernando, B., Cherian, A., and Gould, S.
Deeppermnet: Visual permutation learning. In Proceed-
ings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 3949-3957, 2017.

Sarlin, P.-E., DeTone, D., Malisiewicz, T., and Rabinovich,
A. Superglue: Learning feature matching with graph
neural networks. arXiv preprint arXiv:1911.11763, 2019.

Sinkhorn, R. A relationship between arbitrary positive ma-
trices and doubly stochastic matrices. The annals of
mathematical statistics, 35(2):876-879, 1964.

Sinkhorn, R. and Knopp, P. Concerning nonnegative ma-
trices and doubly stochastic matrices. Pacific Journal of
Mathematics, 21(2):343-348, 1967.

A. Vanishing gradient in softmax function
with temperature

In the softmax function with temperature, vanishing gradient
problem can be understood as follows. We express the
softmax function with temperature 7 as

eﬁ,; /7'
DY
The derivative of this function used in the backward proce-
dure using identity matrix [ is

0o; 1

T Lo hy — (/)
We focus on the m-th largest and [-th second largest value
on x and obtain

ox/T)=1"- -]T. 3)

1
om(X/7T) = 5)
(x/7) L€ 4D s €k (
€ = e@r—Tm) /T (6)



End-to-end permutation learning with Hungarian algorithm

The m, m-th gradient is

00 (x/7)

0T

= (7

1 1 1
= 1- (®)
Tl+e+ D hsmih ( Lter+ Dk smy €k>

For x, this nearly equals O when

a+ Y 0 if ©)
k#m,l

€ =~ 0 (10)

Ty — Ty 2 —00 (11)

This means the nearly argmax condition z,,, >> z;. If we
are not in this condition, which means the difference from
the maximum in x is nearly constant ¢, we define |x| = K,
then

00, (x/7)

0z, = 12)

1 1 1

— 1-— 13

Tl—l—(K—l)eC/T( 1+(K—1)eC/T> (13)
Usingl —1/(1+a)~a if a~0,

90 (x/7) _ 1
“ow,, S -Dze

(14)

in near low temperature 7 ~ 0. As e~/ goes to 0 far
faster than 1/7, the vanishing gradient also occurs in low
temperature. In conclusion, the softmax function with tem-
perature has the problems in that we cannot get close the
relaxation gap because of the vanishing gradient problem.
As 32-bit floating-point operation becomes numerically O
from around exp(—1000), 7 ~ ¢/1000 is the actual lower
bound of the calculation.

B. Hungarian algorithm visualization

We visualized the Hungarian algorithm as a function and
argmax function in Fig. 4. We took three random matri-
ces from standard Gaussian distribution as x1, X2, X3 ~
IN(0,1)|P*P in the Hungarian algorithm or x1, X2, X3 ~
IN(0,1)|P in the argmax function, made a triangle us-
ing these points as the vertices, ran the Hungarian al-
gorithm or argmax function for each internal grid point
p = ax1+bxz2+(1—a—b)xsonlyif (1—a—>b) > 0 where
a ={0,1/200,---,1} and b{0,1/200, - - - , 1}, remapped
into an equilateral triangle by p’ = a[0.5v/3,0.5]7 +
b[0,0]T + (1 — a — b)[0, 1] and colored the points using
small patches of rectangles based on the kind of permutation
matrix or argmax result index. From this visualization, we
can see that the argmax function and the Hungarian algo-
rithm have very similar landscapes and similar inputs has
the same answer in many cases.

08
06
04

0.2

™
rp

0.0

0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8

(a) 4 x 4 Hungarian algorithm (b) 7 x 7 Hungarian algorithm

0.8 0.8

0.6 0.6

0.4 0.4

0.2 0.2

0.0 0.0

(c) 16-dim. argmax function (d) 49-dim. argmax function

Figure 4. Visualizations of Hungarian algorithm and argmax func-
tion. Axes are a and b. These two landscapes look very similar.
Hungarian algorithm’s landscape seems to reflect shape of latent
polytope. As argmax function can be used with STE in Gumbel-
Softmax (Jang et al., 2016), we argue that it also can be used with
STE.



End-to-end permutation learning with Hungarian algorithm

C. Implementation details

> detach r—

Hungarian
algorithm

© 6 =-log(-log(u~U(0,1)))

Figure 5. Example of computational graph of Hungarian algorithm
with STE and Gumbel noise in typical define-by-run framework.
In forward path, detach” just bypasses input. Hungarian algo-
rithm and “detach” are ignored in backward path. We did not
exponentiate noised variable before using Hungarian algorithm
due to performance reasons.

D. Analytical explanation of iteration plateaus

‘We assume the case
e 1 ¢
A= 1 e 1 (15)
e 1 €

However, the same methodology can be applied in any case.
Following calculation, we omit the symmetric terms. After
row-wise normalization, the matrix becomes

e/(1+2¢) 1/(1+ 2€)

N,(A)=1| 1/(2+¢) ¢€/(24+¢) - |, (16)

the 1st order Taylor approximation for the row-wise normal-
ization result is

€ 1— 2

N!(A) = e e -, (17)

ol
=

the column-wise normalization of the approximated row-
wise normalization result is

N(Ny.(A)) (18)

19)

and the 1st order Taylor approximation of the column-wise
normalization of the approximated row-wise normalization

Table 3. Hyperparameter details
N-number sorting task

number of test samples 10
number of max. epochs 500
learning rate 0.1
optimizer Adam
batch size (equals training set size) 10
Gumbel noise samples 10
temperature in Gumbel-Sinkhorn 1.0
Sinkhorn unrolling number L 20
1st (g1) affine layer’s shape 1x 32
1st (g1) nonlinear function RelLU
2nd (g2) affine layer’s shape 32 x N

N = M x M MNIST jigsaw puzzle task

number of max. epochs 20
learning rate le-4
optimizer Adam
batch size 32
Gumbel noise samples 10
temperature in Gumbel-Sinkhorn 1.0
Sinkhorn unrolling number L 20
Ist (g1) 2D conv. layer’s hidden layer 64
Ist (g1) 2D conv. layer’s kernel size 5
Ist (g1) 2D conv. layer’s padding size 2
Ist (g1) nonlinear function ReLLU
Ist (g1) 2D max pooling layer’s stride 2
2nd (g-) affine (w/o bias) layer’s shape 64 - %f x M?
result is
N (N (4)) (20)
2¢ % — %6 .
= 1-4¢ e - |]. 21)

These correspond to the one iteration of the Sinkhorn itera-

tion. We unroll one more iteration. The first step is

(23)
the second step is
N;(N(NL(A))) 24
de 1—8e
=| 2+ Le - |, (25)



End-to-end permutation learning with Hungarian algorithm

the third step is

Ne(N7(N(N;(A)))) (26)
de/(3 + le (1—8e)/(2—12T¢)
=| G+R/z+45e  (39/2—Fe)

27)

and the fourth step is
NN (NN (A)))) (28)
8e % — ée
= 1-16e Le (29)

Therefore, we can induce the general term of the 1,1 ele-
ment for example. This is described using the number of
normalizations k,l = [1k] as

ok=1 . ¢ (30)

From this, 2¥~! grows exponentially but the € is extremely
small. This balance seems to cause the plateaus. As the
1,1 element will converge to % in the actual iteration, the
change point for the 1,1 element will be at the step of

k= —logy e+ 2 31

This approximately equals

e=0.1,k~5 (32)
e=0.01,k~9 (33)
e =0.001,k ~ 12 (34)
e =0.0001,k ~ 15 (35)
e=1le—5k~19 (36)
e=1le—6,k~22 (37)
e=1le—T,k~25 (38)
e=1e— 8k ~29 39)
e=1le—9k~32 (40)
e=1le— 10,k ~ 35 41)

This roughly expresses the iteration plateau effect.

E. Full results of MNIST jigsaw puzzle and
number sorting tasks



End-to-end permutation learning with Hungarian algorithm

Table 4. MNIST zigsaw puzzle task results. Up-arrow means higher is better. Values are mean of scores.

MNIST (train) MNIST (evaluate)
2x2  3x3 4x4 5x5 6x6 2x2  3x3 4x4 5x5  6x6
Gumbel-Sinkhorn
1 Kendall tau 1.00 0.65 033 022 0.16 1.00 0.66 033 023 0.16
J Prop. wrong 0.00 023 056 0.78 0.88 0.00 023 056 0.78 0.88
| Prop. any wrong 0.00 0.62 1.00 1.00 1.00 0.00 0.61 1.00 1.00 1.00
! 0.00 0.02 0.06 0.13 0.16 0.00 0.02 006 0.13 0.16
112 0.00 0.01 0.03 0.06 0.08 0.00 0.01 0.03 0.06 0.07
J constraint error 0.01 0.05 0.07 0.03 0.03 0.01 0.05 0.07 0.04 0.03
Hungarian-STE

1 Kendall tau 1.00 0.62 029 0.15 0.11 1.00 0.63 0.29 0.15 0.10
J Prop. wrong 0.00 0.27 064 085 0.92 0.00 026 063 084 0.92
| Prop. any wrong 0.00 0.69 1.00 1.00 1.00 0.00 0.67 1.00 1.00 1.00
i 0.00 0.02 0.07 0.15 0.17 0.00 0.02 0.07 0.14 0.17
112 0.00 0.01 0.06 0.12 0.14 0.00 0.01 006 0.11 0.14
J constraint error 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 5. Number sorting task results. Up-arrow means higher is better. Values are mean of scores.

N= 5 10 15 80 100 120 150 200 250 400
Sinkhorn
1 Kendall tau 1.00 1.00 0.82 1.00 1.00 097 095 095 094 0.89
J Prop. wrong 0.00 0.00 0.09 0.00 0.00 003 0.03 004 0.04 0.08
J Prop. any wrong 0.00 0.00 0.70 0.00 0.10 1.00 1.00 100 100 1.00
4100 x 1 0.00 0.00 023 0.00 0.00 003 003 003 0.03 0.04
11000 x (2 0.00 0.00 0.10 0.00 0.00 001 0.01 001 0.00 0.01
Hungarian-STE without Gumbel noise
1 Kendall tau 1.00 1.00 1.00 1.00 0.70 061 098 0.86 097 0.86
J Prop. wrong 0.00 0.00 0.00 0.00 024 033 0.01 012 0.02 0.11
J Prop. any wrong 0.00 0.00 0.00 0.00 1.00 100 050 1.00 1.00 1.00
4100 x 1 0.00 0.00 0.00 0.00 024 029 0.00 004 0.00 0.02
41000 x [2 0.00 0.00 0.00 0.00 0.04 006 000 0.00 0.00 0.00
Gumbel-Sinkhorn
1 Kendall tau .00 1.00 088 094 086 092 0.82 072 077 0.59
J Prop. wrong 0.00 0.00 0.08 005 0.11 007 013 023 019 034
J Prop. any wrong 0.00 0.00 060 1.00 1.00 100 1.00 1.00 1.00 1.00
4100 x 11 0.00 0.00 028 0.03 0.12 006 0.10 0.16 0.10 0.12
J 1000 x 2 0.00 0.00 0.16 0.00 0.03 0.0l 0.02 004 0.02 0.02
Hungarian-STE with Gumbel noise
1 Kendall tau .00 1.00 1.00 1.00 1.00 T1.00 1.00 096 093 0.80
J Prop. wrong 0.00 0.00 0.00 0.00 0.00 0.00 0.00 003 0.06 0.16
J Prop. any wrong 0.00 0.00 0.00 0.00 0.00 000 0.10 1.00 1.00 1.00
4100 x 11 0.00 0.00 0.00 0.00 0.00 0.00 000 0.01 0.02 0.03
11000 x (2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 000 0.00 0.00




