Generating Programmatic Referring Expressions via Program Synthesis

Abstract

Incorporating symbolic reasoning into machine
learning algorithms is a promising approach to
improve performance on tasks that require logical
reasoning. We study the problem of generating
a programmatic variant of referring expressions:
given a symbolic representation of an image and
a target object in that image, generate a relational
program that uniquely identifies the target object.
We propose a program synthesis algorithm that
uses reinforcement learning to generate such pro-
grams. We demonstrate that our approach signifi-
cantly outperforms several baselines on challeng-
ing benchmarks based on the CLEVR dataset.

1. Introduction

Incorporating symbolic reasoning with deep neural net-
works (DNNs) is an important challenge in machine learn-
ing. Intuitively, DNNs are promising techniques for pro-
cessing perceptual information; then, symbolic reasoning
should be able to operate over the outputs of the DNNss to ac-
complish more abstract tasks. Recent work has successfully
applied this approach to question-answering tasks, showing
that leveraging programmatic representations can substan-
tially improve performance—in particular, in visual question
answering, by building a programmatic representation of
the question and a symbolic representation of the image, we
can evaluate the question representation in the context of
the image representation to compute the answer (Yi et al.,
2018; Mao et al., 2019; Ma et al., 2019).

A natural question is whether incorporating symbolic rea-
soning with DNNSs can be useful for tasks beyond question
answering. In particular, consider the problem of generating
a referring expression—i.e., an image caption that uniquely
identifies a given rarget object in a given image (Golland
et al., 2010; Kazemzadeh et al., 2014). In contrast to visual
question answering, where we translate a question to a pro-
gram and then execute that program, in this case, we want to
synthesize a program identifying the target object and then
translate this program into a caption.

We take a first step towards realizing this approach. We
study the problem of generating a programmatic variant
of referring expressions that we call referring relational
programs. We assume we are given a symbolic repre-

sentation of an image—such a representation can be eas-
ily constructed using state-of-the-art deep learning algo-
rithms (Redmon et al., 2016; Krishna et al., 2017; Yi et al.,
2018; Mao et al., 2019)—together with a target object in
that image. Then, our goal is to synthesize a relational pro-
gram that uniquely identifies the target object in terms of its
attributes and its relations to other objects in the image. Fig-
ure 1 (left) shows an example of an image from the CLEVR
dataset, and two referring relational programs for object G
in this image. The task for this image is challenging since G
has identical attributes as H, which means that the program
must use spatial relationships to distinguish them.

Then, we propose an algorithm for synthesizing referring
relational programs given the symbolic representation of the
image. The objective is to search over the space of possible
programs to find one that achieves the given goal—in our
case, find a relational program that uniquely identifies the
target object when evaluated against the symbolic represen-
tation of the image. To account for the combinatorial size of
the search space, our algorithm builds on recent techniques
including execution-guided synthesis (Chen et al., 2018),
hierarchical synthesis (Nye et al., 2019), and a simple meta-
learning approach (Si et al., 2018).

‘We evaluate our approach on the CLEVR dataset (Johnson
et al., 2017), a synthetic dataset of objects with different
attributes and spatial relationships. We leverage control over
the data generation process to generate problem instances
that are particularly challenging—i.e., where there are mul-
tiple objects with the same attributes in each scene. By
doing so, a valid relational referring program must include
complex spatial relationships to successfully identify the
target object. Our approach outperforms several baselines.

2. Referring Relational Programs

Scene graph representation of images. We represent im-
ages via scene graphs G € G. Vertices in GG are objects
in the image, and edges encode relations between objects.
Unary relations represent attributes such as color and shape,
and binary relations capture spatial information between
objects—above, left, right, and the like. Abstractly, we
think of G as a set of relations over objects, where p; € R:

G = {pi(O’iv""Oiu)}?:l :

Relational programs. Our search space consists of rela-
tional programs, which we view as sets of relations over

Generating Programmatic Referring Expressions via Program Synthesis

Program 1: Program 2:

color(var0, gray)

/\ front(var0, varl)

/\ color(varl, brown)

Output: Output:

{var0=G,varl =F} {var0=G,var1=C}
{var0=G,varl =B}

color(var0, gray)
/\ front(var0, varl)
/\ shape(varl, cube)

Program:

color(var0O, blue) /\ shape(var0, cube) /\ size(var0, large)
/\ left(var0, varl) /\ left(varl, var2)

/\ left(var0, var2) /\ color(var2, blue) /\ shape(var2, cube)
/\ size(var2, large) /\ material(var2, rubber)

Output:

{var0=A,varl =B,var2=C}

Figure 1. Left: An example image from the CLEVR dataset, and two referring relational programs that identify the target object G. The
challenge is distinguishing G from the second gray cube H. The first program identifies the target object as the “gray object in front of the
brown object”, where the brown object is the sphere F. The second program identifies the target object as the “gray object in front of the
cube”. In this case, the cube can be either B or H, but either of these choices uniquely identifies G. Right: A challenging problem instance
that requires several relations to solve (especially when restricted to three free variables—i.e., | Z| = 3). The program shown is generated
by our algorithm. It identifies the target object as “the large blue cube to the left of the object to the left of a large blue rubber cube”.

variables. More precisely, let Z be a finite set of variables,
with z; € Z a target variable representing the object being
referred to. A relational program is a set of predicates:

A valuation v € V is a function v : Z — O that maps each
variable to an object in the scene. Given a valuation, we can
ground the variables in a program using [-]:

m

[[P]]'u = {pl(U(Zi), "'71}(221-))}1':1 :

That is, [-] converts P into a set of predicates over objects.
Then we can treat [P], : G — B, where B = {true, false},
as a Boolean function over scene graphs defined so that

[71, (&) = (IP1, € G),

ie., [P], (G) is true if and only if all of the relationships in
[P],, are also contained in G.

Definition 2.1 A valuation v € V is valid for relational
program P and scene graph G iff [P], (G) = true.

We denote the set of all valid valuations for P in G by
[Pl ={veVI[IP], (&)}

Referring relational programs. Our goal is to generate a
relational program that satisfies the properties of a referring
expression (Golland et al., 2010; Kazemzadeh et al., 2014).

Given a scene and an object o; in that scene, a referring
expression is a natural language caption that uniquely iden-
tifies 0. Figure 1 shows an example of an image together
with referring relational programs that identify the target
object in that image, and Figure 5 shows an example of a
scene graph (ignoring the gray variable nodes).

We study a symbolic variant of this problem—i.e., (i) we
assume the image is given as a scene graph G (e.g., these can
be constructed using deep learning (Redmon et al., 2016;
Krishna et al., 2017; Yi et al., 2018; Mao et al., 2019)), and
(ii) our referring expressions are relational programs that
uniquely identify o;. More precisely, given a scene graph
G and an object o; in G, we want to construct a relational
program P such that z; must refer to o, in the context of G.

Definition 2.2 Given scene graph G and target object o;
in G, P is a referring relational program for o; in G if (i)
[P]. # @, and (ii) forall v € [P], v(2) = o;.

Intuitively, a referring relational program must (i) have at
least one interpretation, and (ii) all interpretations must
refer to the target object. We assume o, is encoded in G
via a unary farget relation, and use the predicate ¢ (P) to
indicate P is a referring relational program for o, in G.

3. Program Synthesis Algorithm

Next, we describe our algorithm that, given a scene graph
G, synthesizes a referring relational program P for G. At a

Generating Programmatic Referring Expressions via Program Synthesis

gray(var0)
(Action)

(State)
Input
(Symbolic)

brown (varl)
(Action)

(State)

Interpreter

—
(Environment)

Interpreter
(Environment) / / 1

front(var0, varl)
(Action)

Interpreter

—
(Environment)

(State)

"

1
(Reward)

(State)

Figure 2. Example rollout according to our MDP. The input is a symbolic representation of the image as a graph. The states encode
possible assignments of variables to objects in the scene; these are represented as graphs such as the one shown in Figure 5. The actions
are clauses p(z1, ..., zn); an action is chosen according to the Q-values predicted by the GNN @Q-network. The interpreter, which serves
as the “environment”, removes the variables assignments that are no longer permitted by the newly chosen clause.

high level, we formulate the synthesis problem as a Markov
decision process (MDP), visualized in Figure 4. We use
reinforcement learning to learn a good policy 7 for this
MDP on a training benchmark. Then, given a new test
graph G, we continue to fine-tune 7 holding G fixed, and
return once we find a referring relational program P for G.

Our MDP builds on execution-guided synthesis (Chen et al.,
2018), where the states are the outputs produced by exe-
cuting programs P. Intuitively, our goal is to compute a
program P such that all consistent valuations uniquely iden-
tify the target object—i.e., v(z;) = o;. Thus, given G € G
for the current image, we consider the output of P to be the
set of valuations v € V consistent with G.

In particular, the states s € S in our MDP are s = (G, V),
where G is a scene graph and V' C V is a subset of valu-
ations. Given a graph G, the initial state is s = (G, V);
this choice corresponds to the empty program Fy = true
(so [Po]; = V). Next, the actions ¢ € A in our MDP
are a = (p,21,...,2n) € R X Z*, where p is an n-ary
relationship. Then, the (deterministic) transitions are

(G, V) =T{G,V),(p; 215, 2n))
V' i={veV|[p(z1, . 20)]o(G)}.

That is, V' is the set of all valuations that are consistent with

G given the additional predicate p(z1, ...
use a sparse reward function

, 2n). Finally, we

R((G,V)) =1(Vv € V. v(z) = 04).

That is, R((G,V)) = 1 if and only if the program P cor-
responding to the sequence of actions taken is a referring
relational program for G. Thus, a policy that achieves good
reward on this MDP should quickly identify a valid referring
relational program for a given graph G.

We use the deep Q-learning algorithm with a replay buffer
to perform reinforcement learning—surprisingly, we found
this approach outperformed policy gradient and actor-critic
approaches. We believe it works well since the states in our
formulation capture a lot of information about the progress
of the policy. Given the deep Q-network Qy(s,a), the
corresponding policy 7 is to use Qy(s,a) with e-greedy
exploration—i.e., m(s) = arg max, 4 Qo(s, a) with prob-
ability 1 — €, and 7(s) ~ Uniform(A) with probability e.

We give details of our algorithm in Appendix A. Our ap-
proach can also be extended to handling cases where the
scene graph contains uncertain relationships (e.g., to capture
cases where the CNN used to construct the scene graph is
uncertain about) a prediction; see Appendix B for details.

Generating Programmatic Referring Expressions via Program Synthesis

1
208
=
206
=
204
2
T 0.2 I
0 I I |
1 43

3-d-1-1-1 4el-1-1 5e1-1 6- 52
Benchmark Type

m Our Approach =Metal ®Enum (M=3)

Figure 3. Fraction of problem instances solved in a variety of
benchmarks by different algorithms. Comparing our algorithm
(black) to baselines neurosymbolic synthesis (blue) and enumera-
tive synthesis with M = 3 (red).

4. Experiments

We evaluate our approach on the CLEVR dataset, both (i) on
purely synthetic graphs that we generated, and (ii) on graphs
constructed using a CNN based on the original CLEVR im-
ages. We use synthetic data since it allows us to generate
challenging problem instances that require the use of rela-
tionships involving multiple objects. We demonstrate that
our approach outperforms several baselines on the purely
synthetic graphs; we include comparisons to ablations and
results on CNN graphs in Appendix C.

4.1. Experimental Setup

Dataset. Our dataset is a set of synthetic scene graphs that
include objects and relations between these objects, includ-
ing unary ones (called attributes), namely shape, color, and
material, as well as binary ones that encode spatial relations,
namely front/behind and left/right.

Using this approach, we can create challenging problem
instances (i.e., a scene graph and a target object) to evaluate
our algorithm. Our primary goal is to create problem in-
stances where the referring relational program has to include
spatial relationships to identify the target object. These in-
stances are challenging since multiple relations are needed
to distinguish two identical objects—e.g., in Figure 1 (left),
at least two relations are needed to distinguish G from H,
and more are needed in Figure 1 (right).

To this end, we create graphs with multiple identical objects
in the scene. We classify these datasets by the set of counts
of identical objects (in terms of attributes). For instance, the
dataset CLEVR-4-3 consists of 7 objects total, the first 4
and last 3 of which have identical attributes—e.g., it might
contain 4 gray metal cubes and 3 red metal spheres.

For simplicity, we directly generate scene graphs; thus, they
do not contain any uncertainty. We impose constraints on the
graphs to ensure they can be rendered into actual CLEVR

images if desired. We consider the following datasets: 3-1-
1-1-1, 4-1-1-1, 5-1-1, 6-1, 5-2, and 4-3. For each dataset,
we use 7 total objects. Each dataset has 30 scene graphs for
training (a total of 210 problem instances), and 500 scene
graphs for testing (a total of 3500 problem instances).

Our algorithm. We search for programs of length at most
M = 8, using K = 2 in hierarchical synthesis. We consider
three variables—i.e., | Z| = 3, including z;. We use N =
200 rollouts during reinforcement learning. We pretrain our
@-network on the training set corresponding to each dataset,
using NV = 10000 gradient steps with a batch size of 5.

4.2. Comparison to Baselines

We use each algorithm on our synthetic graphs dataset; in
Figure 6 (left), we report what fraction of each kind of
problem instance that is solved by each one.

Neurosymbolic synthesis. We compare to a state-of-the-
art synthesizer called Metal (Si et al., 2018). This approach
uses reinforcement learning to find a program that satis-
fies the given specification; in addition, they use the same
simple meta-learning approach as ours. As can be seen in
Figure 6, our approach substantially outperforms this base-
line by using hierarchical synthesis and execution-guided
synthesis. For instance, on 6-1, our approach solves 82%;
in contrast, Metal solves just 19%. Similarly, on 4-3, our
approach solves 97% whereas Metal solves just 6%. We
believe Metal works poorly in our setting due to the lack of
intermediate feedback in our setting.

Enumerative synthesis. We compare to a synthesis algo-
rithm that enumerates programs to find one that solves the
task (Alur et al., 2013). This approach does not use ma-
chine learning to guide its search, making it challenging
to scale to large programs (i.e., large M) due to the com-
binatorial blowup in the search space; thus, we consider
M = 3. As can be seen in Figure 6, our approach substan-
tially outperforms enumerative synthesis. For instance, on
6-1, our approach solves 82%, whereas enumerative syn-
thesis solves 42%, and on 4-3, our approach solves 97%,
whereas enumerative synthesis solves 41%.

5. Conclusions

We have proposed an approach to solving a symbolic variant
of referring expressions using program synthesis. Our work
is a first step towards incorporating symbolic reasoning into
image captioning tasks. Future work includes leveraging our
approach to generate natural language referring expressions
for real-world images—i.e., by synthesizing a referring re-
lational program and translating it to natural language. In
addition, we have ignored the problem of naturalness for
the programs we generate (i.e., how easy it is for a human
to understand the program), which is important to address.

Generating Programmatic Referring Expressions via Program Synthesis

References

Alur, R., Bodik, R., Juniwal, G., Martin, M. M.,
Raghothaman, M., Seshia, S. A., Singh, R., Solar-
Lezama, A., Torlak, E., and Udupa, A. Syntax-guided
synthesis. IEEE, 2013.

Chen, X., Liu, C., and Song, D. Execution-guided neural
program synthesis. In ICLR, 2018.

Golland, D., Liang, P., and Klein, D. A game-theoretic ap-
proach to generating spatial descriptions. In Proceedings
of the 2010 conference on empirical methods in natu-
ral language processing, pp. 410-419. Association for
Computational Linguistics, 2010.

Johnson, J., Hariharan, B., van der Maaten, L., Fei-Fei, L.,
Lawrence Zitnick, C., and Girshick, R. Clevr: A diag-
nostic dataset for compositional language and elementary
visual reasoning. In Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition, pp.
2901-2910, 2017.

Kazemzadeh, S., Ordonez, V., Matten, M., and Berg, T.
Referitgame: Referring to objects in photographs of natu-
ral scenes. In Proceedings of the 2014 conference on em-
pirical methods in natural language processing (EMNLP),
pp. 787-798, 2014.

Kipf, T. N. and Welling, M. Semi-supervised classification
with graph convolutional networks. In ICLR, 2017.

Krishna, R., Zhu, Y., Groth, O., Johnson, J., Hata, K.,
Kravitz, J., Chen, S., Kalantidis, Y., Li, L.-J., Shamma,
D. A., et al. Visual genome: Connecting language and
vision using crowdsourced dense image annotations. In-
ternational Journal of Computer Vision, 123(1):32-73,
2017.

Ma, K., Francis, J., Lu, Q., Nyberg, E., and Oltramari,
A. Towards generalizable neuro-symbolic systems
for commonsense question answering. arXiv preprint
arXiv:1910.14087, 2019.

Mao, J., Gan, C., Kohli, P., Tenenbaum, J. B., and Wu, J.
The neuro-symbolic concept learner: Interpreting scenes,
words, and sentences from natural supervision. In /CLR,
2019.

Nye, M., Hewitt, L., Tenenbaum, J., and Solar-Lezama, A.
Learning to infer program sketches. In ICML, 2019.

Redmon, J., Divvala, S., Girshick, R., and Farhadi, A. You
only look once: Unified, real-time object detection. In
Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 779-788, 2016.

Si, X., Yang, Y., Dai, H., Naik, M., and Song, L. Learning
a meta-solver for syntax-guided program synthesis. In
ICLR, 2018.

Yi, K., Wu, J., Gan, C., Torralba, A., Kohli, P., and Tenen-
baum, J. Neural-symbolic vqa: Disentangling reasoning
from vision and language understanding. In Advances in
Neural Information Processing Systems, pp. 1031-1042,
2018.

Generating Programmatic Referring Expressions via Program Synthesis

A. Program Synthesis Algorithm Details

We give details on our program synthesis algorithm; our
algorithm is summarized in Algorithm 1.

State encoding. A key challenge is designing a neural
network architecture for predicting Qg (s, a). Our approach
is based on encoding s = (G, V') as a graph data structure,
and then choosing Qs(s, a) to be a graph neural network
(GNN). Our graph encoding of (G, V') has three main kinds
of vertices: (i) objects o in G, (ii) relationships p € R, and
(iii) variables z € Z, as well as a few auxiliary kinds of
vertices to support the graph encoding. In Figure 5, we show
an example of a graph encoding of a state in our MDP.

First, each object o is represented by exactly one vertex
in the graph; each relationship p € R is represented by
exactly one vertex in the graph; and each variable z € Z is
represented by exactly one vertex in the graph.

Second, for each relationship p;(0;.1,...,0in,) € G, we
introduce n + 1 new vertices {(i, p;), (4, 1), ..., (¢,n;) } into
the graph, along with the edges

(Zapl) — (Z7 1) > 015 ey (Zapl) - (Zanl) — Op;

as well as the edge p; — (4, p;). This approach serves two
purposes. The first purpose is that the intermediate vertex
(i, p;) distinguishes different relationships in G with the
same type p; € R. In addition, the edges p; — (¢, p;)
connects all relationship of the same type, which allows
information to flow between these parts of the graph—for
example, these edges could help the GNN count how many
occurrences of the relationship “red” are in G. The second
purpose is that the intermediate vertices (4, j) preserve infor-
mation about the ordering of the objects in the relationship—
e.g., in front(o, o’), the edge (7,0) — o indicates that o is in
front, and (¢,1) — o indicates that o’ is behind.

Third, to encode the valuations v € V, we include the
following edges in the graph:

Uz—=v(z) |z €2}

veV

Intuitively, these edges capture all possible assignments of
objects o to variables z that are allowed by V. For instance,
in the initial state Sy = (G, V), these edges are z — o for
every z € Z and o in G. This encoding loses information
about V/, since an assignment o to z may only be allowed for
a subset of v € V. However, V' is combinatorial in size, so
encoding the entire structure of V' yields too large a graph.

To ensure that information can flow both ways, all edges in
our encoding described above are bidirectional.

Neural network architecture. As mentioned above,
Qo(s,a) is based on a graph convolutional network
(GCN) (Kipf & Welling, 2017). We use t(s) to denote

Algorithm 1 Our algorithm for synthesizing referring rela-
tional programs. Hyperparameters are N, M, K € N.
function SynthesizeProgram(G)
Initialize Q-network Qg with pretrained parameters 6°
fori € {1,...,N} do
Sample program P of length M according to Qg
if p(P) then
return P
Update Qg using deep @ learning
Get best length M — K program P according to Qg
for Programs P of length K do
if o(P° A P) then
return P° A P
return &

the graph encoding of s = (G, V') described above, where
in addition each node is represented by a fixed embedding
vector depending on its node name. The relationship vertices
p and (i, p;) have an embedding vector z,. The positional
vertices (i, j) encoding object ordering use an single embed-
ding x,, ; specific to both the corresponding relationship p;
and the object position j within the relationship.

Now, Qg applies a sequence of graph convolutions to ¢ (s):

PO = y(s)
D = 0 @®) (vt € {0,1,...,m — 1}.

Each ¢(*) has the same graph structure as 1(s), but the
embedding vectors a:,(f) associated with each vertex k are
different (i.e., computed as a function of the embeddings in

the previous layer and of the GCN parameters).

Finally, at the output layer, Q¢ decodes the ()-values for
each action p(z1, ..., 2,) based on the embedding vectors of
the corresponding vertices p, 21, ..., Zp:

Qo(s,p(21y .0y 2n)) = gg(x(pm)wgl"), ceny :UgT))

The architecture of gy can be any aggregation method from
vertex level to action level. Two example strategies are
LSTM structure and concatenation.

Hierarchical synthesis. We adopt an approach based on
hierarchical synthesis (Nye et al., 2019). The idea is to
combine a neurosymbolic synthesizer with a traditional one
based on enumerative search. Intuitively, the neurosymbolic
synthesizer can determine the majority of the program, after
which the enumerative synthesizer can be used to complete
the program into one that satisfies ¢ (P).

More precisely, in the first phase, we run the neurosymbolic
synthesizer for a fixed number IV of steps. At each step in
this phase, we generate a program P of length M; if we
find one that satisfies ¢ (P), then we return it. Otherwise,

Generating Programmatic Referring Expressions via Program Synthesis

MO L
i (m)
Xp
(m)
> eeNn @g Gather i > LSTM > Qg(s,a)
) m (m)
X & xm 2" o
S = (G, V) a= p(zla ,Zn)

Figure 4. Our Q-network architecture. It takes as input an encoding of the state as a graph, and produces a vector embedding for each
node using a GCN. Then, it predicts Q(s, a) based on the vector embeddings for the nodes in the graph relevant to the action a.

we continue to the second phase. In this phase, we begin by
constructing the best program P° of length M — K accord-
ing to Qg (i.e., use zero exploration € = 0), where K € N
is a hyperparameter of our algorithm. Then, we perform an
exhaustive search over programs P of length K, checking
if the combined program P’ = P° A P satisfies ¢ (P'). If
we find such a program, then we return it. Finally, we return
& if we do not find a valid program, indicating failure.

Meta-learning. Finally, the algorithm we have described so
far is for synthesizing a single referring relational program
from scratch for a given scene graph G. We use a simple
meta-learning approach where we pretrain Qg on a training
benchmark of similar synthesis problems. In particular, we
assume given a training set Gy.iyn C G of scene graphs; then,
we use deep ()-learning to train a neural network QQgo that
achieves high reward on average for random

[J(0; G)],

6° = arg max E
/] G ~Uniform(Girain)
where J(0; G) is the standard @Q)-learning objective for the
MDP constructed for scene graph G.

Overall algorithm. Our overall algorithm is summarized
in Algorithm 1. It takes as input a scene graph G, and
outputs a relational referring program P (i.e., that satisfies
¢c(P)), or @ if it fails to find such a program. The first
step initializes Qg with the pretrained parameters 0°. Then,
the first phase uses deep (-learning to tune 6 based on
programs P of length M sampled from the MDP for G. If
no valid program is found, then it proceeds to the second
phase, where it performs an exhaustive enumerative search
over programs PY A P, where PV is the optimal program of
length M — K according to QQy. If again no valid program
is found, then it returns & to indicate failure.

B. Handling Uncertain Relations

Our approach can be extended to handle cases when the
relations p(01, ..., 0,,) in the scene graph G are uncertain—
e.g., to handle relations where the CNN used to predict the
scene graph has low confidence. In particular, relations in
G can be certain (guaranteed to be in the graph), uncertain
(may or may not be in the graph), or absent (guaranteed to

behind

behind_4
sphere
behind_3

right 2 right_T

blue

Figure 5. Example of a graph encoding of a state. Variables are
shown in gray and objects are shown in purple. Binary relation-
ships are shown in red (for a vertex p) and pink (for a vertex (i, p;)).
Unary relationships are shown in yellow; these relationships only
have a single object, so we do not need a separate vertex for each
relationship in (¢, p;). The target relationship is shown in blue.

not be in the graph). We represent this decomposition by
writing G = G4 U G+ as the disjoint union of the certain
relations G4 and the uncertain relations G- ; absent relations
are omitted.

Definition B.1 Given scene graph G and target object o;
in G, P is a referring relational program for o; in G if (i)
[Plg, # @, and (i) forall v € [P] g, v(z) = o4

Intuitively, a referring relational program must (i) have at
least one certain interpretation, and (ii) all interpretations
must refer to the target object, regardless of the value of
uncertain relations.

Next, we modify our MDP to handle uncertain relationships.
In particular, it keeps track of both certain and uncertain
relationships—i.e., the initial state is so = (G, V, &), and
the transitions are

(G, VJ/ra V?/) = T((G, V), (p7 2150y Zn))

where
Vi ={veVi|[p(z1;s20)], (G+)}

— (v e Vo | [p(z1, 2], (@)}
Ufv € Vi | [p(z1, o 2], (G2)).

Generating Programmatic Referring Expressions via Program Synthesis

1

208
=
20.6
=
204
2
i 0.2

0

6-1 52 4-3

31111 4-l-1-1 5-1-1
Benchmark Type

m Our Approach = No Hierarchy No Execution

Figure 6. Fraction of problem instances solved in a variety of
benchmarks by different algorithms. Comparing our algorithm
(black) to ablations without hierarchical synthesis (green) and
without execution guidance (yellow).

The rewards are as before—i.e.,

1 ifVo e VEUVs v(z) =04
0 otherwise.

R(G, V., V7)) = {

Finally, we modify need to modify how our MDP state is
encoded by the neural network. In particular, it encodes

whether the relationship is certain as an edge type p =
?

(4, p;) for certain relationships in G4 and p — (i, p;) for

uncertain relationships in G-. Similarly, we use z - v(2)

. . ? .
for certain valuations v € V. and z — v(z) for uncertain
valuations v € V5.

C. Additional Experiments

We describe two additional experiments: (i) comparisons to
ablations of our algorithm, and (ii) experiments on rendered
CLEVR images where a CNN is used to predict the scene
graph (which may lead to errors). For the latter, we include
uncertain relationships in the scene graph G, which are
handled by our algorithm as described in Appendix B.

C.1. Comparison to Ablations

We compare to two ablations on the synthetic graph datasets;
in Figure 6 (right), we report what fraction of the bench-
marks in each category are solved.

Hierarchical synthesis. Next, we compare to an ablation
that does not use hierarchical synthesis—i.e., it only count
the program generated by the neural symbolic synthesizer,
but no enumerative search to correct the generated program.
As can be seen, our approach substantially outperforms
this ablation—e.g., on 6-1, hierarchical synthesis improves
performance from 35% to 82%, and on 4-3, it improves
performance from 46% to 97%. Intuitively, hierarchical
synthesis improves performance by using reinforcement
learning to find the larger but more straightforward parts of

the program, whereas the enumerative synthesizer can find
the more challenging parts using brute force.

Execution guidance. We compare to an ablation where we
do not use the interpreter to guide RL; instead, the states
are partial programs P. In particular, this ablation does not
have feedback from the interpreter until the sparse reward
at the very end of a rollout. As can be seen from Figure 6,
using execution guidance improves our performance, espe-
cially on harder benchmarks—e.g., for the 6-1 benchmark,
it improves performance from 72% to 82%.

C.2. Rendered CLEVR Images

We also evaluate based on a dataset of images from the
original CEVR dataset. These images have the same kinds
of relations as our generated scene graphs.

We use a convolutional neural network (CNN) to construct
the scene graph (Yi et al., 2018). For simplicity, this CNN
predicts both object attributes and positions. The object
attributes are predicted independently—i.e., it could predict
that object J is both red with probability 0.75 and purple
with probability 0.75. We consider a relation to be absent
if p = p(p(01,...,0n)) < 1/2; for relations with p > 1/2,
we consider them to be uncertain if there are multiple such
attributes of the type (e.g., object J is predicted to be both red
and purple with probability > 1/2), and certain otherwise.
The spatial relationships are inferred based on the object
positions; we consider it to be uncertain if the objects are
very close together along some dimension.

Out of 6487 tasks, our approach solved all but 25 according
to the ground truth relations—i.e., the ground truth in the
CLEVR dataset, not the predicted ones seen by our inter-
preter. Thus, our approach works well even when there is
uncertainty in the scene graph predicted using a CNN.

